[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
[2] |
Manfredi S, Lepage C, Hatem C, et al. Epidemiology and management of liver metastases from colorectal cancer[J]. Ann Surg, 2006, 244(2): 254-259.
|
[3] |
Adam R, de Gramont A, Figueras J, et al. Managing synchronous liver metastases from colorectal cancer: a multidisciplinary international consensus[J]. Cancer Treat Rev, 2015, 41(9): 729-741.
|
[4] |
Sellner F, Thalhammer S, Klimpfinger M. Isolated pancreatic metastases of renal cell carcinoma-clinical particularities and seed and soil hypothesis[J]. Cancers (Basel), 2023, 15(2): 339.
|
[5] |
Nord AS, Blow MJ, Attanasio C, et al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development[J]. Cell, 2013, 155(7): 1521-1531.
|
[6] |
Heinz S, Romanoski CE, Benner C, et al. The selection and function of cell type-specific enhancers[J]. Nat Rev Mol Cell Biol, 2015, 16(3): 144-154.
|
[7] |
D'Artista L, Moschopoulou AA, Barozzi I, et al. MYC determines lineage commitment in kras driven primary liver cancer development [J]. J Hepatol, 2023, 79(1): 141-149.
|
[8] |
Huang P, He Z, Ji S, et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors[J]. Nature, 2011, 475(7356): 386-389.
|
[9] |
Gao H, Yan Z, Sun H, et al. FoXA2 promotes esophageal squamous cell carcinoma progression by ZEB2 activation[J]. World J Surg Oncol, 2021, 19(1): 286.
|
[10] |
Sahoo SS, Ramanand SG, Gao Y, et al. FOXA2 suppresses endometrial carcinogenesis and epithelial-mesenchymal transition by regulating enhancer activity[J]. J Clin Invest, 2022, 132(12): e157574.
|
[11] |
Tomoshige K, Stuart WD, Fink-Baldauf IM, et al. FOXA2 cooperates with mutant KRAS to drive invasive mucinous adenocarcinoma of the lung[J]. Cancer Res, 2023, 83(9): 1443-1458.
|
[12] |
Jin K, Gao W, Lu Y, et al. Mechanisms regulating colorectal cancer cell metastasis into liver (Review) [J]. Oncol Lett, 2012, 3(1): 11-15.
|
[13] |
Wang Z, Kim SY, Tu W, et al. Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment[J]. Cell Metab, 2023: S1550-4131(23)00140-7.
|
[14] |
Enquist IB, Good Z, Jubb AM, et al. Lymph node-independent liver metastasis in a model of metastatic colorectal cancer[J]. Nat Commun, 2014, 5: 3530.
|
[15] |
Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis[J]. Cell, 2017, 168(4): 670-691.
|
[16] |
Reymond N, d'Água BB, Ridley AJ. Crossing the endothelial barrier during metastasis[J]. Nat Rev Cancer, 2013, 13(12): 858-870.
|
[17] |
Tammela T, Sage J. Investigating tumor heterogeneity in mouse models[J]. Annu Rev Cancer Biol, 2020, 4(1): 99-119.
|
[18] |
Zhao Y, Li J, Li D, et al. Tumor biology and multidisciplinary strategies of oligometastasis in gastrointestinal cancers[J]. Semin Cancer Biol, 2020, 60: 334-343.
|
[19] |
Iwafuchi-Doi M, Zaret KS. Pioneer transcription factors in cell reprogramming[J]. Genes Dev, 2014, 28(24): 2679-2692.
|
[20] |
Lehner F, Kulik U, Klempnauer J , et al. The hepatocyte nuclear factor 6 (HNF6) and FOXA2 are key regulators in colorectal liver metastases[J]. FASEB J, 2007, 21(7): 1445-1462.
|
[21] |
Lehner F, Kulik U, Klempnauer J, et al. Inhibition of the liver enriched protein FOXA2 recovers HNF6 activity in human colon carcinoma and liver hepatoma cells[J]. PLoS One, 2010, 5(10): e13344.
|
[22] |
Wang B, Liu G, Ding L, et al. FOXA2 promotes the proliferation, migration and invasion, and epithelial mesenchymal transition in colon cancer[J]. Exp Ther Med, 2018, 16(1): 133-140.
|
[23] |
Teng S, Li YE, Yang M, et al. Tissue-specific transcription reprogramming promotes liver metastasis of colorectal cancer[J]. Cell Res, 2020, 30(1): 34-49.
|