切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2023, Vol. 12 ›› Issue (05) : 404 -414. doi: 10.3877/cma.j.issn.2095-3224.2023.05.007

论著

基于SEER数据库手术后原发性阑尾肿瘤患者预后列线图构建与验证
王立涛, 刘恩瑞, 李振鲁, 吴昌亮, 高鹏()   
  1. 266000 青岛大学附属医院急诊外科
  • 收稿日期:2023-04-13 出版日期:2023-10-25
  • 通信作者: 高鹏
  • 基金资助:
    山东省自然科学基金青年项目(ZR2020QH165)

Development and validation of a nomogram to predict overall survival in patients with primary appendiceal tumors after surgery based on the SEER database

Litao Wang, Enrui Liu, Zhenlu Li, Changliang Wu, Peng Gao()   

  1. Department of Emergency Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
  • Received:2023-04-13 Published:2023-10-25
  • Corresponding author: Peng Gao
引用本文:

王立涛, 刘恩瑞, 李振鲁, 吴昌亮, 高鹏. 基于SEER数据库手术后原发性阑尾肿瘤患者预后列线图构建与验证[J/OL]. 中华结直肠疾病电子杂志, 2023, 12(05): 404-414.

Litao Wang, Enrui Liu, Zhenlu Li, Changliang Wu, Peng Gao. Development and validation of a nomogram to predict overall survival in patients with primary appendiceal tumors after surgery based on the SEER database[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2023, 12(05): 404-414.

目的

探讨原发性阑尾肿瘤患者手术后影响生存的独立危险因素,构建并验证列线图,帮助识别高危患者,制定个体化治疗方案。

方法

回顾性收集美国Surveillance,Epidemiology,and End Results(SEER)数据库2010~2015年诊断为阑尾肿瘤的患者临床资料,随机分为训练队列和验证队列。采用多因素Cox回归分析影响原发性阑尾肿瘤术后患者总生存期(OS)的独立危险因素,开发了一种新的列线图模型,并通过内部验证进行评估。

结果

年龄、病理分型、肿瘤分化、N分期、M分期、淋巴结清扫数量、CEA状态是影响术后阑尾肿瘤患者预后的独立危险因素(P<0.05)。该列线图训练队列的C指数为0.811(95%CI:0.797~0.825),验证队列的C指数为0.844(95%CI:0.819~0.869)。1、3、5年总生存率ROC曲线下面积(AUC)在训练队列和验证队列中分别为0.807、0.849、0.824和0.857、0.862、0.825。采用X年10次200折交叉验证,进一步验证预测模型区分不同结局事件患者的能力。校准曲线和临床决策曲线(DCA)显示具有良好的一致性和临床获益。风险分级系统将所有患者分为三组,Kaplan-Meier曲线显示不同组间OS具有良好的分层和区分能力。

结论

我们开发了一种新的列线图模型来预测原发性阑尾肿瘤术后OS。此外,风险分级系统有助于准确评估预后和指导治疗。

Objective

Exploring the independent risk factors that affect the survival of patients with primary appendiceal tumors after surgery, constructing and validating column charts to help identify high-risk patients, and developing personalized treatment plans.

Methods

We retrospectively collected clinical data from patients diagnosed with appendiceal tumors in the American Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2015, and randomly divided them into a training set and a validation set. Multiple factor Cox regression analysis was used to identify independent risk factors that affect overall survival (OS) in patients with primary appendiceal tumors after surgery. A new column chart model was developed and evaluated through internal validation.

Results

Age, Pathology type, Tumor stage, N-stage, M-stage, lymph node dissection quantity, and CEA status were identified as independent risk factors affecting the prognosis of postoperative appendiceal tumor patients (P<0.05). The C-index of the column chart training set was 0.811 (95% CI: 0.797~0.825), and the C-index of the validation set was 0.844 (95% CI: 0.819~0.869). The area under the ROC curve (AUC) of the 1-, 3-, and 5-year overall survival rates was 0.807, 0.849, and 0.824 in the training set, and 0.857, 0.862, and 0.825 in the validation set, respectively. Further validation of the predictive model's ability to distinguish between different outcome events was performed using X-year 10-fold 200-fold cross-validation. The calibration curve and decision curve analysis (DCA) showed good consistency and clinical benefits. The risk grading system divided all patients into three groups, and the Kaplan-Meier curve showed good stratification and discrimination ability between different groups regarding OS.

Conclusions

We developed a new column chart model to predict postoperative overall survival (OS) in patients with primary appendiceal tumors. In addition, the risk grading system helps accurately assess prognosis and guide treatment.

表1 人口统计学特征[例(%)]
变量 总队列(n=3 777) 训练队列(n=2 833) 验证队列(n=944) χ2 P
种族 0.932 0.628
白色人种 3 154(83.5) 2 375(83.8) 779(82.5)
黑色人种 396(10.5) 290(10.2) 106(11.2)
其他 227(6.0) 168(5.9) 59(6.2)
性别 1.142 0.285
女性 2 123(56.2) 1 607(56.7) 516(54.7)
男性 1 654(43.8) 1 226(43.3) 428(45.3)
诊断时年龄(岁) 0.760 0.783
<60 2 261(59.9) 1 700(60) 561(59.4)
≥60 1 516(40.1) 1 133(40) 383(40.6)
病理分型 0.980 0.913
腺癌 1 387(36.7) 1 039(36.7) 348(36.9)
类癌 1 155(30.6) 863(30.5) 292(30.9)
杯状细胞腺癌 388(10.3) 298(10.5) 90(9.5)
神经内分泌肿瘤 332(8.8) 251(8.9) 81(8.6)
其他 515(13.6) 382(13.5) 133(14.1)
肿瘤分化 4.832 0.305
高分化 1 595(42.2) 1 208(42.6) 387(41)
中分化 1 010(26.7) 737(26) 273(28.9)
低分化 469(12.4) 362(12.8) 107(11.3)
未分化 86(2.3) 68(2.4) 18(1.9)
其他 617(16.3) 458(16.2) 159(16.8)
肿瘤分期 2.401 0.662
0 27(0.7) 20(0.7) 7(0.7)
1 605(42.5) 1 187(41.9) 418(44.3)
1 059(28.0) 801(28.3) 258(27.3)
446(11.8) 333(11.8) 113(12)
640(16.9) 492(17.4) 148(15.7)
T分期 2.608 0.625
Tis 27(0.7) 20(0.7) 7(0.7)
T1 1 437(38.0) 1 062(37.5) 375(39.7)
T2 325(8.6) 240(8.5) 85(9)
T3 905(24.0) 682(24.1) 223(23.6)
T4 1 083(28.7) 829(29.3) 254(26.9)
N分期 0.258 0.879
N0 3 074(81.4) 2 302(81.3) 772(81.8)
N1 462(12.2) 347(12.2) 115(12.2)
N2 241(6.4) 184(6.5) 57(6)
M分期 1.317 0.251
M0 3 137(83.1) 2 341(82.6) 796(84.3)
M1 640(16.9) 492(17.4) 148(15.7)
淋巴结清扫数量(个) 0.932 0.614
未清扫 1 501(39.7) 1 119(39.5) 382(40.5)
<12 540(14.3) 414(14.6) 126(13.3)
≥12 1 736(46.0) 1 300(45.9) 436(46.2)
CEA 1.142 0.417
阴性 438(11.6) 323(11.4) 115(12.2)
阳性 375(9.9) 291(10.3) 84(8.9)
不详 2 964(78.5) 2 219(78.3) 745(78.9)
化疗 0.760 0.301
无/不详 2 795(74.0) 2 109(74.4) 686(72.7)
982(26.0) 724(25.6) 258(27.3)
肿瘤大小(cm) 0.980 0.516
≤2 1 980(52.4) 1 476(52.1) 504(53.4)
>2 1 797(47.6) 1 357(47.9) 440(46.6)
表2 基于训练队列的单因素与多因素Cox回归分析
变量 单因素分析 多因素分析
HR(95%CI P HR(95%CI P
种族
白色人种 1 1
黑色人种 1.2(0.96~1.48) 0.105 1.12(0.9~1.39) 0.307
其他 1.37(1.05~1.79) 0.021 1.14(0.87~1.49) 0.347
性别
女性 1 1
男性 1.17(1.02~1.35) 0.024 1.15(1~1.32) 0.055
年龄(岁)
<60 1 1
≥60 2.62(2.28~3.02) <0.001 1.87(1.61~2.16) <0.001
病理分型
腺癌 1 1
类癌 0.1(0.08~0.14) <0.001 0.4(0.26~0.61) <0.001
杯状细胞腺癌 0.44(0.35~0.56) <0.001 0.83(0.63~1.09) 0.178
神经内分泌肿瘤 0.16(0.11~0.24) <0.001 0.52(0.32~0.82) 0.006
其他 0.76(0.63~0.91) 0.003 0.85(0.7~1.02) 0.082
肿瘤分化
高分化 1 1
中分化 2.72(2.24~3.31) <0.001 1.45(1.17~1.79) <0.001
低分化 7.45(6.11~9.08) <0.001 2.4(1.91~3.03) <0.001
未分化 8.99(6.55~12.35) <0.001 2.3(1.63~3.25) <0.001
其他 1.43(1.11~1.84) 0.006 1.29(0.98~1.69) 0.007
肿瘤分期
0 1
0.41(0.15~1.12) 0.083
1.47(0.55~3.95) 0.446
2.54(0.94~6.85) 0.066
4.86(1.81~13.02) 0.002
T分期
Tis 1 1
T1 0.36(0.13~0.98) 0.046 0.78(0.28~2.21) 0.639
T2 0.76(0.27~2.13) 0.602 0.88(0.31~2.49) 0.813
T3 1.51(0.56~4.07) 0.413 1.1(0.41~2.97) 0.856
T4 3.87(1.45~10.36) 0.007 1.73(0.64~4.68) 0.283
N分期
N0 1 1
N1 2.59(2.09~2.99) <0.001 1.8(1.47~2.2) <0.001
N2 9.81(8.19~11.76) <0.001 3.26(2.61~4.08) <0.001
M分期
M0 1 1
M1 4.63(4.02~5.33) <0.001 1.46(1.46~2.08) <0.001
淋巴结清扫数量
未清扫 1 1
<12 2.98(2.42~3.67) <0.001 1.14(0.91~1.43) 0.257
≥12 2.28(1.92~2.72) <0.001 0.74(0.6~0.91) 0.004
CEA
阴性 1 1
阳性 1.93(1.54~2.43) <0.001 1.45(1.14~1.84) 0.002
不详 0.54(0.45~0.66) <0.001 1.28(1.05~1.57) 0.015
化疗
无/不详 1
3.51(3.06~4.03) <0.001
肿瘤大小(cm)
≤2 1 1
>2 3.02(2.59~3.51) <0.001 1(0.84~1.19) 0.996
图1 Lasso回归进行交叉验证和回归分析。1A:交叉验证;1B:Lasso回归路径图
图2 列线图预测手术后阑尾肿瘤患者的总生存期(OS)
图3 列线图1年、3年、5年总生存期ROC曲线。A1~A3:训练队列;B1~B3:验证队列
图4 3年和5年10次200折交叉验证可视化小提琴图。4A:训练队列;4B:验证队列
图5 列线图1、3、5年总生存率校准曲线。A1~A3:训练队列;B1~B3:验证队列
图6 列线图1、3、5年总生存率临床决策曲线。6A:训练队列;6B:验证队列
表3 训练队列和验证队列1、3、5年临床决策曲线下面积(AUDC)
图7 风险分级系统。7A~7B:预测总分数的最优截断值;7C:根据总队列的OS绘制不同风险等级的Kaplan-Meier曲线
[1]
Shankar S, Ledakis P, El HH, et al. Neoplasms of the appendix: current treatment guidelines[J]. Hematol Oncol Clin North Am, 2012, 26(6): 1261-1290.
[2]
Glasgow SC, Gaertner W, Stewart D, et al. The American society of colon and rectal surgeons, clinical practice guidelines for the management of appendiceal neoplasms[J]. Dis Colon Rectum, 2019, 62(12): 1425-1438.
[3]
McCusker ME, Coté TR, Clegg LX, et al. Primary malignant neoplasms of the appendix: a population-based study from the surveillance, epidemiology and end-results program, 1973-1998[J]. Cancer, 2002, 94(12): 3307-3312.
[4]
Tiselius C, Kindler C, Shetye J, et al. Computed tomography follow-up assessment of patients with low-grade appendiceal mucinous neoplasms: evaluation of risk for pseudomyxoma peritonei[J]. Ann Surg Oncol, 2017, 24(7): 1778-1782.
[5]
Overman MJ, Fournier K, Hu CY, et al. Improving the AJCC/TNM staging for adenocarcinomas of the appendix: the prognostic impact of histological grade[J]. Ann Surg, 2013, 257(6): 1072-1078.
[6]
Mällinen J, Rautio T, Grönroos J, et al. Risk of Appendiceal neoplasm in periappendicular abscess in patients treated with interval appendectomy vs follow-up with magnetic resonance imaging: 1-year outcomes of the peri-appendicitis acuta randomized clinical trial[J]. JAMA Surg, 2019, 154(3): 200-207.
[7]
Marmor S, Portschy PR, Tuttle TM, et al. The rise in appendiceal cancer incidence: 2000-2009[J]. J Gastrointest Surg, 2015, 19(4): 743-750.
[8]
Amin MB, Greene FL, Edge SB, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging[J]. CA Cancer J Clin, 2017, 67(2): 93-99.
[9]
Iasonos A, Schrag D, Raj GV, et al. How to build and interpret a nomogram for cancer prognosis[J]. J Clin Oncol, 2008, 26(8): 1364-1370.
[10]
Valentini V, van Stiphout RG, Lammering G, et al. Nomograms for predicting local recurrence, distant metastases, and overall survival for patients with locally advanced rectal cancer on the basis of European randomized clinical trials[J]. J Clin Oncol, 2011, 29(23): 3163-3172.
[11]
Weiser MR, Landmann RG, Kattan MW, et al. Individualized prediction of colon cancer recurrence using a nomogram[J]. J Clin Oncol, 2008, 26(3): 380-385.
[12]
Whitfield CG, Amin SN, Garner JP. Surgical management of primary appendiceal malignancy[J]. Colorectal Dis, 2012, 14(12): 1507-1511.
[13]
Liu T, Mi J, Wang Y, et al. Establishment and validation of the survival prediction risk model for appendiceal cancer[J]. Front Med (Lausanne), 2022, 9: 1022595.
[14]
Yezierski RP. The effects of age on pain sensitivity: preclinical studies[J]. Pain Med, 2012, 13(Suppl. 2): S27-S36.
[15]
Assarzadegan N, Montgomery E. What is new in the 2019 World Health Organization (WHO) classification of tumors of the digestive system: review of selected updates on neuroendocrine neoplasms, appendiceal tumors, and molecular testing[J]. Arch Pathol Lab Med, 2021, 145(6): 664-677.
[16]
中国医师协会结直肠肿瘤专业委员会. 中国阑尾肿瘤多学科综合治疗专家共识(2021版)[J/OL]. 中华结直肠疾病电子杂志, 2021, 10(3): 225-231.
[17]
Chua TC, Moran BJ, Sugarbaker PH, et al. Early- and long-term outcome data of patients with pseudomyxoma peritonei from appendiceal origin treated by a strategy of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy[J]. J Clin Oncol, 2012, 30(20): 2449-2456.
[18]
Liu X, Mody K, de Abreu FB, et al. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations[J]. Clin Chem, 2014, 60(7): 1004-1011.
[19]
Arends MJ, Fukayama M, Klimstra DS, et al. WHO classification of tumours of the digestive system[M]. 5th ed. Lyon (France): International Agencyfor Research on Cancer Press, 2019.
[20]
裘法祖, 吴阶平. 黄家驷外科学[M]. 6版. 北京: 人民卫生出版社, 2000.
[21]
余佩武, 王代科. 阑尾类癌的临床诊断与治疗[J]. 中国实用外科杂志, 1997, 17(3): 11-12.
[22]
Gahagan JV, Whealon MD, Phelan MJ, et al. Lymph node positivity in appendiceal adenocarcinoma: should size matter?[J]. J Am Coll Surg, 2017, 225(1): 69-75.
[23]
Fleischmann I, Warschkow R, Beutner U, et al. Improved survival after retrieval of 12 or more regional lymph nodes in appendiceal cancer[J]. Eur J Surg Oncol, 2017, 43(10): 1876-1885.
[24]
Zhao S, Bi Y, Wang Z, et al. Accuracy evaluation of combining gastroscopy, multi-slice spiral CT, Her-2, and tumor markers in gastric cancer staging diagnosis[J]. World J Surg Oncol, 2022, 20(1): 152.
[25]
Thirunavukarasu P, Sukumar S, Sathaiah M, et al. C-stage in colon cancer: implications of carcinoembryonic antigen biomarker in staging, prognosis, and management[J]. J Natl Cancer Inst, 2011, 103(8): 689-697.
[1] 胡可, 鲁蓉. 基于多参数超声特征的中老年女性压力性尿失禁诊断模型研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 477-483.
[2] 余晓青, 高欣, 罗文培, 杨露. BI-RADS 4类结节患者的乳腺癌风险预测模型[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 217-223.
[3] 蒲彦婷, 吴翠先, 兰玉梅. 类风湿关节炎患者骨质疏松症风险预测列线图模型构建[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 596-603.
[4] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[5] 杜佳丽, 鲍睿, 乔春红, 韩伟. 中孕期宫颈功能不全孕妇经阴道紧急宫颈环扎术后不良妊娠结局预测模型构建[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 403-409.
[6] 白香妮, 孙巨军, 谢鹤, 李宏斌. 急性胰腺炎患者血清微小RNA-142-3p和磷脂酰肌醇3-激酶水平变化及对并发腹腔感染风险预测[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 222-228.
[7] 蔡大明, 陆晓峰, 王行舟, 王萌, 刘颂, 夏雪峰, 沈晓菲, 杜峻峰, 管文贤. 三级淋巴结构在胃神经内分泌瘤中的预后价值及预后预测模型构建[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 401-405.
[8] 王淑贤, 张良灏, 王利君, 张慧, 郭源, 许传屾, 李志强, 蔡金贞, 解曼, 饶伟. 成人肝移植围手术期严重心血管事件危险因素分析及预测模型研究[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 222-229.
[9] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[10] 张瑜, 姜梦妮. 基于DWI信号值构建局部进展期胰腺癌放化疗生存获益预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 657-664.
[11] 杨秀君, 崔梦莹, 刘水, 盛基尧, 张丹. 基于SEER数据库胰头部胰腺神经内分泌癌患者预后列线图构建与验证[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 520-525.
[12] 单良, 刘怡, 于涛, 徐丽. 老年股骨颈骨折术后患者心理弹性现状及影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 294-300.
[13] 刘燚隆, 党荣广, 艾蓉, 张凯. 肝硬化合并静脉曲张出血患者内镜治疗后再出血风险的模型建立与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 336-342.
[14] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?