切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2023, Vol. 12 ›› Issue (05) : 415 -419. doi: 10.3877/cma.j.issn.2095-3224.2023.05.008

综述

结直肠癌肝转移生物治疗的现状及进展
刘祺, 张凯, 李建男(), 刘铜军()   
  1. 130000 长春,吉林大学第二医院结直肠肛门外科
  • 收稿日期:2022-05-10 出版日期:2023-10-25
  • 通信作者: 李建男, 刘铜军
  • 基金资助:
    国家自然科学基金青年基金(32000953)

Current status and progress of biologic treatment for colorectal cancer liver metastases

Qi Liu, Kai Zhang, Jiannan Li(), Tongjun Liu()   

  1. Department of Colorectal and Anal Surgery, Second Hospital of Jilin University, Changchun 130000, China
  • Received:2022-05-10 Published:2023-10-25
  • Corresponding author: Jiannan Li, Tongjun Liu
引用本文:

刘祺, 张凯, 李建男, 刘铜军. 结直肠癌肝转移生物治疗的现状及进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 415-419.

Qi Liu, Kai Zhang, Jiannan Li, Tongjun Liu. Current status and progress of biologic treatment for colorectal cancer liver metastases[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2023, 12(05): 415-419.

结直肠癌患者的初诊肝转移率约为15%~25%,另有15%~25%的患者在接受原发病灶根治术后发生肝转移,其中肝转移病灶的初始不可切除率占80%~90%。近年来,生物治疗已成为转移性肿瘤治疗的新选择之一,可以延长患者的生存期。本文对近年来结直肠癌肝转移生物治疗的现状及进展作一综述。

The initial liver metastasis rate in colorectal cancer patients is about 15%~25%, and another 15%~25% of patients develop liver metastasis after undergoing radical surgery of the primary lesion, of which the initial unresectable rate of liver metastatic lesions accounts for 80%~90%. In recent years, biologic therapy has become one of the new options for the treatment of metastatic tumors, which can prolong the survival of patients. This article reviews the current status and progress of biological therapy for colorectal cancer with liver metastasis.

[2]
ENgstrand J, Nilsson H, Strömberg C, et al. Colorectal cancer liver metastases - a population-based study on incidence, management and survival [J]. BMC cancer, 2018, 18(1): 78.
[3]
Giannis D, Sideris G, Kakos CD, et al. The role of liver transplantation for colorectal liver metastases: A systematic review and pooled analysis [J]. Transplant Rev (Orlando), 2020, 34(4): 100570.
[4]
Dmello RS, To SQ, Chand AL. Therapeutic targeting of the tumour microenvironment in metastatic colorectal cancer [J]. Int J Mol Sci, 2021, 22(4): 2067.
[5]
Sabanathan D, Eslick GD, Shannon J. Use of neoadjuvant chemotherapy plus molecular targeted therapy in colorectal liver metastases: a systematic review and meta-analysis [J]. Clin Colorectal Cancer, 2016, 15(4): e141-e147.
[6]
Primrose J, Falk S, Finch-jones M, et al. Systemic chemotherapy with or without cetuximab in patients with resectable colorectal liver metastasis: the New EPOC randomised controlled trial [J]. The Lancet Oncology, 2014, 15(6): 601-611.
[7]
Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer [J]. N Engl J Med, 2004, 350(23): 2335-2342.
[8]
Tomasello G, Petrelli F, Ghidini M, et al. FOLFOXIRI plus bevacizumab as conversion therapy for patients with initially unresectable metastatic colorectal cancer: a systematic review and pooled analysis [J]. JAMA Oncology, 2017, 3(7): e170278.
[9]
Ye LC, Liu TS, Ren L, et al. Randomized controlled trial of cetuximab plus chemotherapy for patients with KRAS wild-type unresectable colorectal liver-limited metastases [J]. J Clin Oncol, 2013, 31(16): 1931-1938.
[10]
Lenz HJ, Ou FS, Venook AP, et al. Impact of consensus molecular subtype on survival in patients with metastatic colorectal cancer: results from CALGB/SWOG 80405 (Alliance) [J]. J Clin Oncol, 2019, 37(22): 1876-1885.
[11]
Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial [J]. Lancet (London, England), 2013, 381(9863): 303-312.
[12]
Shitara K, Yamanaka T, Denda T, et al. REVERCE: a randomized phase II study of regorafenib followed by cetuximab versus the reverse sequence for previously treated metastatic colorectal cancer patients [J]. Ann Oncology, 2019, 30(2): 259-265.
[13]
Li J, Qin S, Xu RH, et al. Effect of fruquintinib vs placebo on overall survival in patients with previously treated metastatic colorectal cancer: The FRESCO randomized clinical trial [J]. JAMA, 2018, 319(24): 2486-2496.
[14]
Stintzing S, Heinrich K, Tougeron D, et al. Randomized study to investigate FOLFOXIRI plus either bevacizumab or cetuximab as first-line treatment of BRAF V600E-mutant mCRC: The phase-II FIRE-4.5 study (AIO KRK-0116) [J]. Journal of Clinical Oncology, 2021, 39(15): 3502.
[15]
Grothey A, Fakih M, Tabernero J. Management of BRAF-mutant metastatic colorectal cancer: a review of treatment options and evidence-based guidelines [J]. Ann Oncol, 2021, 32(8): 959-967.
[16]
Tabernero J, Grothey A, Van Cutsem E, et al. Encorafenib plus cetuximab as a new standard of care for previously treated BRAF V600E-mutant metastatic colorectal cancer: updated survival results and subgroup analyses from the BEACON study [J]. Journal of Clinical Oncology, 2021, 39(4): 273-284.
[17]
Van Cutsem E, Huijberts S, Grothey A, et al. Binimetinib, encorafenib, and cetuximab triplet therapy for patients with BRAF V600E-mutant metastatic colorectal cancer: safety lead-in results from the phase Ⅲ BEACON colorectal cancer study [J]. Journal of Clinical Oncology, 2019, 37(17): 1460-1469.
[18]
Kopetz S, Grothey A, Yaeger R, et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer [J]. N Engl J Med, 2019, 381(17): 1632-1643.
[19]
André T, Shiu KK, Kim TW, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer [J]. N Engl J Med, 2020, 383(23): 2207-2218.
[20]
Overman MJ, Mcdermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study [J]. The Lancet Oncology, 2017, 18(9): 1182-1191.
[21]
Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms [J]. Molecular and Cellular Biology, 2005, 25(21): 9543-9553.
[22]
Chen EX, Jonker DJ, Loree JM, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: The Canadian Cancer Trials Group CO.26 Study [J]. JAMA Oncology, 2020, 6(6): 831-838.
[23]
Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity [J]. CA: A Cancer Journal for Clinicians, 2020, 70(2): 86-104.
[24]
Prieux-klotz C, Dior M, Damotte D, et al. Immune checkpoint inhibitor-induced colitis: diagnosis and management [J]. Targeted Oncology, 2017, 12(3): 301-308.
[25]
Zen Y, Yeh MM. Hepatotoxicity of immune checkpoint inhibitors: a histology study of seven cases in comparison with autoimmune hepatitis and idiosyncratic drug-induced liver injury [J]. Mod Pathol, 2018, 31(6): 965-973.
[26]
Kao JC, Brickshawana A, Liewluck T. Neuromuscular complications of programmed cell death-1 (PD-1) Inhibitors [J]. Curr Neurol Neurosci Rep, 2018, 18(10): 63.
[27]
Kalyan A, Kircher S, Shah H, et al. Updates on immunotherapy for colorectal cancer [J]. J Gastrointest Oncol, 2018, 9(1): 160-169.
[28]
Nami S, Mohammadi R, Vakili M, et al. Fungal vaccines, mechanism of actions and immunology: A comprehensive review [J]. Biomed Pharmacother, 2019, 109: 333-344.
[29]
Ramsay RG, Gonda TJ. MYB function in normal and cancer cells [J]. Nature Reviews Cancer, 2008, 8(7): 523-534.
[30]
Cross RS, Malaterre J, Davenport AJ, et al. Therapeutic DNA vaccination against colorectal cancer by targeting the MYB oncoprotein [J]. Clin Transl Immunology, 2015, 4(1): e30.
[31]
Yu I, Dakwar A, Takabe K. Immunotherapy: recent advances and its future as a neoadjuvant, adjuvant, and primary treatment in colorectal cancer [J]. Cells, 2023, 12(2): 258.
[32]
Mohme M, Neidert MC, Regli L, et al. Immunological challenges for peptide-based immunotherapy in glioblastoma [J]. Cancer Treat Rev, 2014, 40(2): 248-258.
[33]
Santos PM, Butterfield LH. Dendritic cell-based cancer vaccines[J]. J Immunol, 2018, 200(2): 443-449.
[1]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424.
[34]
Kaufman HL, Lenz HJ, Marshall J, et al. Combination chemotherapy and ALVAC-CEA/B7.1 vaccine in patients with metastatic colorectal cancer [J]. Clin Cancer Res, 2008, 14(15): 4843-4849.
[35]
Cho JA, Lee YS, Kim SH, et al. MHC independent anti-tumor immune responses induced by Hsp70-enriched exosomes generate tumor regression in murine models[J]. Cancer Lett, 2009, 275(2): 256-265.
[36]
Dai S, Wei D, Wu Z, et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer [J]. Mol Ther, 2008, 16(4): 782-790.
[37]
Ruella M, Kalos M. Adoptive immunotherapy for cancer [J]. Immunological Reviews, 2014, 257(1): 14-38.
[38]
Turin I, Delfanti S, Ferulli F, et al. In vitro killing of colorectal carcinoma cells by autologous activated NK cells is boosted by anti-epidermal growth factor receptor-induced ADCC regardless of RAS mutation status [J]. Journal of Immunotherapy (Hagerstown, Md: 1997), 2018, 41(4): 190-200.
[39]
Schubert ML, Schmitt M, Wang L, et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy [J]. Ann Oncology, 2021, 32(1): 34-48.
[40]
Parkhurst MR, Yang JC, Langan RC, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis [J]. Mol Ther, 2011, 19(3): 620-626.
[41]
Nguyen M, Tipping SMITH S, Lam M, et al. An update on the use of immunotherapy in patients with colorectal cancer [J]. Expert Rev Gastroenterol Hepatol, 2021, 15(3): 291-304.
[42]
Bacac M, Fauti T, Sam J, et al. A novel carcinoembryonic antigen T-Cell bispecific antibody (CEA TCB) for the treatment of solid tumors [J]. Clin Cancer Res, 2016, 22(13): 3286-3297.
[43]
Bacac M, Klein C, Umana P. CEA TCB: A novel head-to-tail 2∶1 T cell bispecific antibody for treatment of CEA-positive solid tumors [J]. Oncoimmunology, 2016, 5(8): e1203498.
[44]
Wang J, Lou HM, Cai HB, et al. A study of AK104 (an anti-PD1 and anti-CTLA4 bispecific antibody) combined with standard therapy for the first-line treatment of persistent, recurrent, or metastatic cervical cancer (R/M CC) [J]. Journal of Clinical Oncology, 2022, 40(16): 106.
[45]
Dovedi SJ, Elder MJ, Yang C, et al. Design and efficacy of a monovalent bispecific PD-1/CTLA4 antibody that enhances CTLA4 blockade on PD-1(+) activated T cells [J]. Cancer Discovery, 2021, 11(5): 1100-1117.
[46]
Geevarghese SK, Geller DA, De Haan HA, et al. Phase Ⅰ/Ⅱ study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver [J]. Human Gene Therapy, 2010, 21(9): 1119-1128.
[47]
Markman JL, Shiao SL. Impact of the immune system and immunotherapy in colorectal cancer [J]. Journal of Gastrointestinal Oncology, 2015, 6(2): 208-223.
[48]
Lynch D, Murphy A. The emerging role of immunotherapy in colorectal cancer[J]. Ann Transl Med, 2016, 4(16): 305.
[49]
Ciardiello D, Vitiello PP, Cardone C, et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy [J]. Cancer Treatment Reviews, 2019, 76: 22-32.
[50]
Pitt JM, Marabelle A, Eggermont A, et al. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy [J]. Ann Oncol, 2016, 27(8): 1482-1492.
[51]
Milette S, Sicklick JK, Lowy AM, et al. Molecular pathways: targeting the microenvironment of liver metastases [J]. Clinical Cancer Research, 2017, 23(21): 6390-6399.
[52]
Sarvizadeh M, Ghasemi F, Tavakoli F, et al. Vaccines for colorectal cancer: an update [J]. Journal of Cellular Biochemistry, 2019, 120(6): 8815-8828.
[53]
Lomax AJ, Lim J, Cheng R, et al. Immune toxicity with checkpoint inhibition for metastatic melanoma: case series and clinical management [J]. Journal of Skin Cancer, 2018, 2018: 9602540.
[54]
Simeone E, Grimaldi AM, Festino L, et al. Immunotherapy in metastatic melanoma: a novel scenario of new toxicities and their management [J]. Melanoma Management, 2019, 6(4): Mmt30.
[55]
Champiat S, Lambotte O, Barreau E, et al. Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper [J]. Ann Oncology, 2016, 27(4): 559-574.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 江艺, 张小进, 沈佳佳. 胆囊癌伴肝多发转移手术治疗(腹腔镜下胆囊癌切除+淋巴结清扫+肝Ⅴ、Ⅵ、Ⅶ段切除)[J]. 中华普通外科学文献(电子版), 2023, 17(06): 412-412.
[5] 付佳, 肖海敏, 武曦, 冯涛, 师帅. 年龄校正查尔森合并症指数对腹腔镜结直肠癌围手术期并发症的预测价值[J]. 中华普通外科学文献(电子版), 2023, 17(05): 336-341.
[6] 薛永婷, 高峰, 王雅楠, 屈莲平. 溶瘤病毒治疗在结直肠癌中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(05): 380-384.
[7] 武慧铭, 郭仁凯, 李辉宇. 机器人辅助下经自然腔道取标本手术治疗结直肠癌安全性和有效性的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(05): 395-400.
[8] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[9] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[10] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[11] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[12] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[13] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[14] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[15] 孔凡彪, 杨建荣. 肝脏基础疾病与结直肠癌肝转移之间关系的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(07): 818-822.
阅读次数
全文


摘要