切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2023, Vol. 12 ›› Issue (05) : 415 -419. doi: 10.3877/cma.j.issn.2095-3224.2023.05.008

综述

结直肠癌肝转移生物治疗的现状及进展
刘祺, 张凯, 李建男(), 刘铜军()   
  1. 130000 长春,吉林大学第二医院结直肠肛门外科
  • 收稿日期:2022-05-10 出版日期:2023-10-25
  • 通信作者: 李建男, 刘铜军
  • 基金资助:
    国家自然科学基金青年基金(32000953)

Current status and progress of biologic treatment for colorectal cancer liver metastases

Qi Liu, Kai Zhang, Jiannan Li(), Tongjun Liu()   

  1. Department of Colorectal and Anal Surgery, Second Hospital of Jilin University, Changchun 130000, China
  • Received:2022-05-10 Published:2023-10-25
  • Corresponding author: Jiannan Li, Tongjun Liu
引用本文:

刘祺, 张凯, 李建男, 刘铜军. 结直肠癌肝转移生物治疗的现状及进展[J/OL]. 中华结直肠疾病电子杂志, 2023, 12(05): 415-419.

Qi Liu, Kai Zhang, Jiannan Li, Tongjun Liu. Current status and progress of biologic treatment for colorectal cancer liver metastases[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2023, 12(05): 415-419.

结直肠癌患者的初诊肝转移率约为15%~25%,另有15%~25%的患者在接受原发病灶根治术后发生肝转移,其中肝转移病灶的初始不可切除率占80%~90%。近年来,生物治疗已成为转移性肿瘤治疗的新选择之一,可以延长患者的生存期。本文对近年来结直肠癌肝转移生物治疗的现状及进展作一综述。

The initial liver metastasis rate in colorectal cancer patients is about 15%~25%, and another 15%~25% of patients develop liver metastasis after undergoing radical surgery of the primary lesion, of which the initial unresectable rate of liver metastatic lesions accounts for 80%~90%. In recent years, biologic therapy has become one of the new options for the treatment of metastatic tumors, which can prolong the survival of patients. This article reviews the current status and progress of biological therapy for colorectal cancer with liver metastasis.

[2]
ENgstrand J, Nilsson H, Strömberg C, et al. Colorectal cancer liver metastases - a population-based study on incidence, management and survival [J]. BMC cancer, 2018, 18(1): 78.
[3]
Giannis D, Sideris G, Kakos CD, et al. The role of liver transplantation for colorectal liver metastases: A systematic review and pooled analysis [J]. Transplant Rev (Orlando), 2020, 34(4): 100570.
[4]
Dmello RS, To SQ, Chand AL. Therapeutic targeting of the tumour microenvironment in metastatic colorectal cancer [J]. Int J Mol Sci, 2021, 22(4): 2067.
[5]
Sabanathan D, Eslick GD, Shannon J. Use of neoadjuvant chemotherapy plus molecular targeted therapy in colorectal liver metastases: a systematic review and meta-analysis [J]. Clin Colorectal Cancer, 2016, 15(4): e141-e147.
[6]
Primrose J, Falk S, Finch-jones M, et al. Systemic chemotherapy with or without cetuximab in patients with resectable colorectal liver metastasis: the New EPOC randomised controlled trial [J]. The Lancet Oncology, 2014, 15(6): 601-611.
[7]
Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer [J]. N Engl J Med, 2004, 350(23): 2335-2342.
[8]
Tomasello G, Petrelli F, Ghidini M, et al. FOLFOXIRI plus bevacizumab as conversion therapy for patients with initially unresectable metastatic colorectal cancer: a systematic review and pooled analysis [J]. JAMA Oncology, 2017, 3(7): e170278.
[9]
Ye LC, Liu TS, Ren L, et al. Randomized controlled trial of cetuximab plus chemotherapy for patients with KRAS wild-type unresectable colorectal liver-limited metastases [J]. J Clin Oncol, 2013, 31(16): 1931-1938.
[10]
Lenz HJ, Ou FS, Venook AP, et al. Impact of consensus molecular subtype on survival in patients with metastatic colorectal cancer: results from CALGB/SWOG 80405 (Alliance) [J]. J Clin Oncol, 2019, 37(22): 1876-1885.
[11]
Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial [J]. Lancet (London, England), 2013, 381(9863): 303-312.
[12]
Shitara K, Yamanaka T, Denda T, et al. REVERCE: a randomized phase II study of regorafenib followed by cetuximab versus the reverse sequence for previously treated metastatic colorectal cancer patients [J]. Ann Oncology, 2019, 30(2): 259-265.
[13]
Li J, Qin S, Xu RH, et al. Effect of fruquintinib vs placebo on overall survival in patients with previously treated metastatic colorectal cancer: The FRESCO randomized clinical trial [J]. JAMA, 2018, 319(24): 2486-2496.
[14]
Stintzing S, Heinrich K, Tougeron D, et al. Randomized study to investigate FOLFOXIRI plus either bevacizumab or cetuximab as first-line treatment of BRAF V600E-mutant mCRC: The phase-II FIRE-4.5 study (AIO KRK-0116) [J]. Journal of Clinical Oncology, 2021, 39(15): 3502.
[15]
Grothey A, Fakih M, Tabernero J. Management of BRAF-mutant metastatic colorectal cancer: a review of treatment options and evidence-based guidelines [J]. Ann Oncol, 2021, 32(8): 959-967.
[16]
Tabernero J, Grothey A, Van Cutsem E, et al. Encorafenib plus cetuximab as a new standard of care for previously treated BRAF V600E-mutant metastatic colorectal cancer: updated survival results and subgroup analyses from the BEACON study [J]. Journal of Clinical Oncology, 2021, 39(4): 273-284.
[17]
Van Cutsem E, Huijberts S, Grothey A, et al. Binimetinib, encorafenib, and cetuximab triplet therapy for patients with BRAF V600E-mutant metastatic colorectal cancer: safety lead-in results from the phase Ⅲ BEACON colorectal cancer study [J]. Journal of Clinical Oncology, 2019, 37(17): 1460-1469.
[18]
Kopetz S, Grothey A, Yaeger R, et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer [J]. N Engl J Med, 2019, 381(17): 1632-1643.
[19]
André T, Shiu KK, Kim TW, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer [J]. N Engl J Med, 2020, 383(23): 2207-2218.
[20]
Overman MJ, Mcdermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study [J]. The Lancet Oncology, 2017, 18(9): 1182-1191.
[21]
Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms [J]. Molecular and Cellular Biology, 2005, 25(21): 9543-9553.
[22]
Chen EX, Jonker DJ, Loree JM, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: The Canadian Cancer Trials Group CO.26 Study [J]. JAMA Oncology, 2020, 6(6): 831-838.
[23]
Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity [J]. CA: A Cancer Journal for Clinicians, 2020, 70(2): 86-104.
[24]
Prieux-klotz C, Dior M, Damotte D, et al. Immune checkpoint inhibitor-induced colitis: diagnosis and management [J]. Targeted Oncology, 2017, 12(3): 301-308.
[25]
Zen Y, Yeh MM. Hepatotoxicity of immune checkpoint inhibitors: a histology study of seven cases in comparison with autoimmune hepatitis and idiosyncratic drug-induced liver injury [J]. Mod Pathol, 2018, 31(6): 965-973.
[26]
Kao JC, Brickshawana A, Liewluck T. Neuromuscular complications of programmed cell death-1 (PD-1) Inhibitors [J]. Curr Neurol Neurosci Rep, 2018, 18(10): 63.
[27]
Kalyan A, Kircher S, Shah H, et al. Updates on immunotherapy for colorectal cancer [J]. J Gastrointest Oncol, 2018, 9(1): 160-169.
[28]
Nami S, Mohammadi R, Vakili M, et al. Fungal vaccines, mechanism of actions and immunology: A comprehensive review [J]. Biomed Pharmacother, 2019, 109: 333-344.
[29]
Ramsay RG, Gonda TJ. MYB function in normal and cancer cells [J]. Nature Reviews Cancer, 2008, 8(7): 523-534.
[30]
Cross RS, Malaterre J, Davenport AJ, et al. Therapeutic DNA vaccination against colorectal cancer by targeting the MYB oncoprotein [J]. Clin Transl Immunology, 2015, 4(1): e30.
[31]
Yu I, Dakwar A, Takabe K. Immunotherapy: recent advances and its future as a neoadjuvant, adjuvant, and primary treatment in colorectal cancer [J]. Cells, 2023, 12(2): 258.
[32]
Mohme M, Neidert MC, Regli L, et al. Immunological challenges for peptide-based immunotherapy in glioblastoma [J]. Cancer Treat Rev, 2014, 40(2): 248-258.
[33]
Santos PM, Butterfield LH. Dendritic cell-based cancer vaccines[J]. J Immunol, 2018, 200(2): 443-449.
[1]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424.
[34]
Kaufman HL, Lenz HJ, Marshall J, et al. Combination chemotherapy and ALVAC-CEA/B7.1 vaccine in patients with metastatic colorectal cancer [J]. Clin Cancer Res, 2008, 14(15): 4843-4849.
[35]
Cho JA, Lee YS, Kim SH, et al. MHC independent anti-tumor immune responses induced by Hsp70-enriched exosomes generate tumor regression in murine models[J]. Cancer Lett, 2009, 275(2): 256-265.
[36]
Dai S, Wei D, Wu Z, et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer [J]. Mol Ther, 2008, 16(4): 782-790.
[37]
Ruella M, Kalos M. Adoptive immunotherapy for cancer [J]. Immunological Reviews, 2014, 257(1): 14-38.
[38]
Turin I, Delfanti S, Ferulli F, et al. In vitro killing of colorectal carcinoma cells by autologous activated NK cells is boosted by anti-epidermal growth factor receptor-induced ADCC regardless of RAS mutation status [J]. Journal of Immunotherapy (Hagerstown, Md: 1997), 2018, 41(4): 190-200.
[39]
Schubert ML, Schmitt M, Wang L, et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy [J]. Ann Oncology, 2021, 32(1): 34-48.
[40]
Parkhurst MR, Yang JC, Langan RC, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis [J]. Mol Ther, 2011, 19(3): 620-626.
[41]
Nguyen M, Tipping SMITH S, Lam M, et al. An update on the use of immunotherapy in patients with colorectal cancer [J]. Expert Rev Gastroenterol Hepatol, 2021, 15(3): 291-304.
[42]
Bacac M, Fauti T, Sam J, et al. A novel carcinoembryonic antigen T-Cell bispecific antibody (CEA TCB) for the treatment of solid tumors [J]. Clin Cancer Res, 2016, 22(13): 3286-3297.
[43]
Bacac M, Klein C, Umana P. CEA TCB: A novel head-to-tail 2∶1 T cell bispecific antibody for treatment of CEA-positive solid tumors [J]. Oncoimmunology, 2016, 5(8): e1203498.
[44]
Wang J, Lou HM, Cai HB, et al. A study of AK104 (an anti-PD1 and anti-CTLA4 bispecific antibody) combined with standard therapy for the first-line treatment of persistent, recurrent, or metastatic cervical cancer (R/M CC) [J]. Journal of Clinical Oncology, 2022, 40(16): 106.
[45]
Dovedi SJ, Elder MJ, Yang C, et al. Design and efficacy of a monovalent bispecific PD-1/CTLA4 antibody that enhances CTLA4 blockade on PD-1(+) activated T cells [J]. Cancer Discovery, 2021, 11(5): 1100-1117.
[46]
Geevarghese SK, Geller DA, De Haan HA, et al. Phase Ⅰ/Ⅱ study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver [J]. Human Gene Therapy, 2010, 21(9): 1119-1128.
[47]
Markman JL, Shiao SL. Impact of the immune system and immunotherapy in colorectal cancer [J]. Journal of Gastrointestinal Oncology, 2015, 6(2): 208-223.
[48]
Lynch D, Murphy A. The emerging role of immunotherapy in colorectal cancer[J]. Ann Transl Med, 2016, 4(16): 305.
[49]
Ciardiello D, Vitiello PP, Cardone C, et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy [J]. Cancer Treatment Reviews, 2019, 76: 22-32.
[50]
Pitt JM, Marabelle A, Eggermont A, et al. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy [J]. Ann Oncol, 2016, 27(8): 1482-1492.
[51]
Milette S, Sicklick JK, Lowy AM, et al. Molecular pathways: targeting the microenvironment of liver metastases [J]. Clinical Cancer Research, 2017, 23(21): 6390-6399.
[52]
Sarvizadeh M, Ghasemi F, Tavakoli F, et al. Vaccines for colorectal cancer: an update [J]. Journal of Cellular Biochemistry, 2019, 120(6): 8815-8828.
[53]
Lomax AJ, Lim J, Cheng R, et al. Immune toxicity with checkpoint inhibition for metastatic melanoma: case series and clinical management [J]. Journal of Skin Cancer, 2018, 2018: 9602540.
[54]
Simeone E, Grimaldi AM, Festino L, et al. Immunotherapy in metastatic melanoma: a novel scenario of new toxicities and their management [J]. Melanoma Management, 2019, 6(4): Mmt30.
[55]
Champiat S, Lambotte O, Barreau E, et al. Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper [J]. Ann Oncology, 2016, 27(4): 559-574.
[1] 罗青杉, 梅海涛, 郝家领, 蔡锦锋, 周润楷, 温玉刚. 连接蛋白43通过调控细胞周期抑制结直肠癌的增殖机制研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 344-349.
[2] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[3] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[4] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[5] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[6] 赵磊, 刘文志, 林峰, 于剑, 孙铭骏, 崔佑刚, 张旭, 衣宇鹏, 于宝胜, 冯宁. 深部热疗在改善结直肠癌术后辅助化疗副反应及生活质量中的作用研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 488-493.
[7] 黄海洋, 邝永龙, 陈嘉胜. 基层医院结直肠肿瘤经自然腔道取标本手术30 例分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 510-518.
[8] 张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.
[9] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
[10] 任佳琪, 刁德昌, 何自衍, 张雪阳, 唐新, 李文娟, 李洪明, 卢新泉, 易小江. 网膜融合线导向的脾曲游离技术在左半结肠癌根治术中的应用[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 362-367.
[11] 张迪, 王春霞, 张学东, 李发馨, 庞淅文, 陈一锋, 张维胜, 王涛. 梗阻性左半结直肠癌自膨式金属支架置入后行腹腔镜手术与开腹手术的短期临床疗效比较[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 375-380.
[12] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[13] 李佳莹, 王旭丹, 梁雪, 张雷, 李佳英. 1990~2021年中国结直肠癌死亡趋势分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 274-279.
[14] 戈伟, 陈刚. 纳米炭导航行淋巴示踪在结直肠癌TNM分期中淋巴分期价值的临床研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 288-293.
[15] 崔精, 鲍一帆, 沈晓明, 杨增辉, 高森, 鲍传庆. 结直肠癌中circMFSD12对肿瘤细胞功能及5-FU敏感性的调控[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 294-302.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?