切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2024, Vol. 13 ›› Issue (05) : 381 -388. doi: 10.3877/cma.j.issn.2095-3224.2024.05.005

论著

利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型
张蔚林1, 王哲学2, 白峻阁2, 黄忠诚1, 肖志刚1,()   
  1. 1.410005 长沙市,湖南省人民医院(湖南师范大学附属第一医院)普通外科
    2.100021 北京,国家癌症中心/ 国家肿瘤临床医学研究中心/ 中国医学科学院北京协和医学院肿瘤医院结直肠外科
  • 收稿日期:2024-08-18 出版日期:2024-10-25
  • 通信作者: 肖志刚
  • 基金资助:
    湖南省自然科学基金项目(No.2019JJ40161)

Exploiting the TCGA database to establish a nomogram prognostic model of miRNAs associated with colorectal cancer

Weilin Zhang1, Zhexue Wang2, Junge Bai2, Zhongcheng Huang1, Zhigang Xiao1,()   

  1. 1.Department of General Surgery, Hu'nan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha 410005, China
    2.Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center of Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
  • Received:2024-08-18 Published:2024-10-25
  • Corresponding author: Zhigang Xiao
引用本文:

张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.

Weilin Zhang, Zhexue Wang, Junge Bai, Zhongcheng Huang, Zhigang Xiao. Exploiting the TCGA database to establish a nomogram prognostic model of miRNAs associated with colorectal cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2024, 13(05): 381-388.

目的

利用癌症基因组图谱(TCGA)数据库筛选与结直肠癌患者总生存期(OS)相关的miRNA,构建基于miRNA 的列线图(Nomogram)预后模型,并评估该模型的预测能力。

方法

下载并整合TCGA 数据库中结直肠癌miRNA 测序数据及临床信息,按3∶1 比例随机分为训练队列(training cohort)和验证队列(validation cohort)。应用单因素Cox 回归、拉索(LASSO)回归及多因素Cox 回归分析确定一组与结直肠癌预后相关的miRNA 并建立结直肠癌的预后风险评分,结合风险评分和临床指标构建Nomogram 模型,通过受试者工作特征曲线(ROC)、一致性指数(C-index)、校准曲线及决策曲线分析法(DCA)评估预测效能。

结果

498 例结直肠癌患者纳入研究,差异分析得到291 个miRNA,风险评分=(0.05634381×miR-548u 表达量)+(0.03900542×miR-4665-5p 表达量)-(0.10097599×miR-887-3p 表达量)。结合风险评分、年龄及TNM 分期构建Nomogram 预后模型。验证队列中Nomogram 预后模型、风险评分及TNM 分期的AUC 值分别为0.752,0.720 和0.673,Nomogram 预后模型在训练队列和验证队列一致性指数分别为0.743 和0.761,校准曲线显示Nomogram 对5 年OS 的预测值和实际值具有良好的一致性,DCA 显示Nomogram 预后模型临床获益与TNM 分期系统比较更高。

结论

Nomogram 预后模型具有良好的预测能力,有助于结直肠癌患者的临床决策及预后评估。

Objective

This study aims to identify miRNAs associated with overall survival (OS)in colorectal cancer patients using The Cancer Genome Atlas (TCGA) database,develop a miRNA-based nomogram prognostic model,and assess the model's predictive capability.

Methods

miRNA sequencing data and clinical information of colorectal cancer patients were downloaded and integrated from the TCGA database. The data were randomly divided into a training cohort and a validation cohort in a 3:1 ratio.Univariate Cox regression,LASSO regression,and multivariate Cox regression analyses were employed to identify a set of miRNAs related to colorectal cancer prognosis and to establish a prognostic risk score for colorectal cancer. A nomogram model was then constructed by combining the risk score with clinical indicators. The predictive performance of the model was evaluated using receiver operating characteristic (ROC)curves,concordance index (C-index),calibration curves,and decision curve analysis (DCA).

Results

A total of 498 CRC patients were included in the study. Differential analysis identified 291 miRNAs. The risk score was calculated as follows: Risk Score=(0.05634381×miR-548u expression)+(0.03900542×miR-4665-5p expression)- (0.10097599×miR-887-3p expression). A nomogram prognostic model was constructed incorporating the risk score,age,and TNM stage. In the validation cohort,the AUC values of the nomogram prognostic model,risk score,and TNM stage were 0.752,0.720,and 0.673,respectively. The C-index of the nomogram prognostic model in the training and validation cohorts were 0.743 and 0.761,respectively. The calibration curve demonstrated good agreement between the nomogram's predicted and actual 5-year OS.DCA showed that the nomogram prognostic model offered greater clinical benefit compared to the TNM staging system.

Conclusion

The nomogram prognostic model demonstrates strong predictive ability and may aid in clinical decision-making and prognosis assessment for colorectal cancer patients.

图1 miRNA 在结直肠癌肿瘤与正常对照组织中差异表达火山图,红色表示miRNA 在结直肠癌肿瘤表达上调,蓝色表示下调
表1 TCGA 数据库中498 例结直肠癌患者训练与验证队列临床特征比较[例(%)]
图2 24 个预后相关的miRNA 纳入LASSO 回归分析,在log(λ)=-4.1 时,模型具有最小的偏差(2A)。此时仍然有12 条系数不为零的曲线,对应12 个miRNA 被纳入最终模型中(2B)
表2 结直肠癌预后相关miRNA 的多因素Cox 回归分析
图3 训练队列(3A)、验证队列(3B)结直肠癌患者miRNA 风险评分与预后的生存分析
图4 结直肠癌患者5 年总生存率预测列线图。分别根据每位患者年龄、TNM 分期和miRNA 风险评分进行赋分,在对应指标线段分值上做出该线段的垂直线,投射到“Points”线段上,读出该指标的得分。再根据各指标得分相加,将得出的总分记在“Total Points”线段上,并做垂直线,估计该患者相应的5 年总生存率
表3 训练队列中的单因素和多因素Cox 比例风险回归分析
图5 评估预测效能。训练队列(5A)及验证队列(5B)ROC 曲线;训练队列(5C)及验证队列(5D)校准曲线
图6 验证队列中Nomogram 模型和TNM 分期系统预测结直肠癌术后患者5 年生存的决策曲线分析
图7 靶基因GO 富集图
图8 靶基因KEGG 通路
[1]
Bray F,Ferlay J,Soerjomataram I,et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2018,68(6): 394-424.
[2]
Bartel DP. MicroRNAs: genomics,biogenesis,mechanism,and function[J]. Cell,2004,116(2): 281-297.
[3]
Slattery ML,Herrick JS,Pellatt DF,et al. MicroRNA profiles in colorectal carcinomas,adenomas and normal colonic mucosa:variations in miRNA expression and disease progression[J].Carcinogenesis,2016,37(3): 245-261.
[4]
Zhang Y,Li M,Ding Y,et al. Serum MicroRNA profile in patients with colon adenomas or cancer[J]. BMC Med Genomics,2017,10(1): 23.
[5]
Hofsli E,Sjursen W,Prestvik WS,et al. Identification of serum microRNA profiles in colon cancer[J]. Br J Cancer,2013,108(8):1712-1719.
[6]
Mao Y,Fu Z,Zhang Y,et al. A six-microRNA risk score model predicts prognosis in esophageal squamous cell carcinoma[J]. J Cell Physiol,2019,234(5): 6810-6819.
[7]
Trino S,Lamorte D,Caivano A,et al. Micrornas as new biomarkers for diagnosis and prognosis,and as potential therapeutic targets in acute myeloid leukemia[J]. Int J Mol Sci,2018,19(2): 460.
[8]
Lai J,Wang H,Pan Z,et al. A novel six-microRNA-based model to improve prognosis prediction of breast cancer[J]. Aging,2019,11(2):649-662.
[9]
Huang DW,Sherman BT,Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J].Nat Protoc,2009,4(1): 44-57.
[10]
Sagaert X,Vanstapel A,Verbeek S. Tumor heterogeneity in colorectal cancer: what do we know so far?[J]. Pathobiology,2018,85(1-2): 72-84.
[11]
Zheng P,Chen Q,Li J,et al. Prognostic significance of tumor deposits in patients with stage Ⅲ colon cancer: a nomogram study[J]. J Surg Res,2020,245: 475-482.
[12]
Saso K,Myoshi N,Fujino S,et al. A novel prognostic prediction model for recurrence in patients with stage II colon cancer after curative resection[J]. Mol Clin Oncol,2018,9(6): 697-701.
[13]
Yu C,Zhang Y. Development and validation of a prognostic nomogram for early-onset colon cancer[J]. Bioscience Reports,2019,39(6):BSR20181781.
[14]
Chen F,Li Z,Zhou H. Identification of prognostic miRNA biomarkers for predicting overall survival of colon adenocarcinoma and bioinformatics analysis: A study based on The Cancer Genome Atlas database[J]. J Cell Biochem,2019,120(6): 9839-9849.
[15]
Tibshirani R. The lasso method for variable selection in the Cox model[J]. Stat Med,1997,16(4): 385-395.
[16]
Yadollahi-Farsani M,Amini-Farsani Z,Moayedi F,et al. MiR-548k suppresses apoptosis in breast cancer cells by affecting PTEN/PI3K/AKT signaling pathway[J]. IUBMB Life,2023,75(2): 97-116.
[17]
Chen Z,Lin J,Wu S,et al. Up-regulated miR-548k promotes esophageal squamous cell carcinoma progression via targeting long noncoding RNA-LET[J]. Exp Cell Res,2018,362(1): 90-101.
[18]
Xu M,Zhou C,Weng J,et al. Tumor-associated macrophagesderived exosomes facilitate hepatocellular carcinoma malignance by transferring lncMMPA to tumor cells and activating glycolysis pathway[J]. J Exp Clin Cancer Res,2022,41(1): 253.
[19]
Wang Z,Wu X,Hou X,et al. miR-548b-3p functions as a tumor suppressor in lung cancer[J]. Lasers Med Sci,2020,35(4): 833-839.
[20]
Son GH,Kim Y,Lee JJ,et al. MicroRNA-548 regulates high mobility group box 1 expression in patients with preterm birth and chorioamnionitis[J]. Sci Rep,2019,9(1): 19746.
[21]
Ming GF,Gao BH,Chen P. Identification of conserved pappalysin 1-derived circular RNA-mediated competing endogenous RNA in osteosarcoma[J]. Evolutionary Bioinformatics,2021,17:117693432110413.
[22]
Fite K,Gomez-Cambronero J. Down-regulation of microRNAs (MiRs)203,887,3619 and 182 prevents vimentin-triggered,phospholipase D(PLD)-mediated cancer cell invasion[J]. J Biol Chem,2016,291(2):719-730.
[23]
Xu X,Zheng S. MiR-887-3p negatively regulates STARD13 and promotes pancreatic cancer progression[J]. Cancer Manag Res,2020,(12): 6137-6147.
[1] 罗青杉, 梅海涛, 郝家领, 蔡锦锋, 周润楷, 温玉刚. 连接蛋白43通过调控细胞周期抑制结直肠癌的增殖机制研究[J]. 中华普通外科学文献(电子版), 2024, 18(05): 344-349.
[2] 陈金业, 凌潜龙, 朱冰, 骆杰. 补体B因子在结直肠癌中的表达及临床意义[J]. 中华普通外科学文献(电子版), 2024, 18(03): 192-198.
[3] 孙姚承, 汤建军, 张伟元, 刘传磊. 阳性淋巴结比和阳性淋巴结对数比对结直肠癌患者预后价值的研究[J]. 中华普通外科学文献(电子版), 2024, 18(03): 204-208.
[4] 谢丽春, 欧庆芬, 张秋萍, 叶升. 简化和标准肝脏MRI方案在结直肠癌肝转移患者随访中的临床应用[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 434-437.
[5] 施烨鑫, 马翔, 鲁明, 夏青城, 王鹏超, 宋青雨, 赵庆洪. 腹腔镜下结直肠肿瘤定位研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 463-466.
[6] 任佳琪, 刁德昌, 何自衍, 张雪阳, 唐新, 李文娟, 李洪明, 卢新泉, 易小江. 网膜融合线导向的脾曲游离技术在左半结肠癌根治术中的应用[J]. 中华结直肠疾病电子杂志, 2024, 13(05): 362-367.
[7] 张迪, 王春霞, 张学东, 李发馨, 庞淅文, 陈一锋, 张维胜, 王涛. 梗阻性左半结直肠癌自膨式金属支架置入后行腹腔镜手术与开腹手术的短期临床疗效比较[J]. 中华结直肠疾病电子杂志, 2024, 13(05): 375-380.
[8] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
[9] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[10] 李佳莹, 王旭丹, 梁雪, 张雷, 李佳英. 1990~2021年中国结直肠癌死亡趋势分析[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 274-279.
[11] 戈伟, 陈刚. 纳米炭导航行淋巴示踪在结直肠癌TNM分期中淋巴分期价值的临床研究[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 288-293.
[12] 崔精, 鲍一帆, 沈晓明, 杨增辉, 高森, 鲍传庆. 结直肠癌中circMFSD12对肿瘤细胞功能及5-FU敏感性的调控[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 294-302.
[13] 李月刚, 关旭, 赵志勋, 权继传, 庄孟, 汤坚强. 结直肠癌NOSES手术的国际研究现状[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 321-328.
[14] 国超凡, 彭琪博, 郑章强, 于向阳. 低位前切除综合征风险预测及治疗的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 335-340.
[15] 杨明, 张金珠, 王锡山. 全国肿瘤登记中心发布的2013年至2022年结直肠癌流行数据趋势解读[J]. 中华结直肠疾病电子杂志, 2024, 13(03): 177-181.
阅读次数
全文


摘要