切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2019, Vol. 08 ›› Issue (06) : 541 -545. doi: 10.3877/cma.j.issn.2095-3224.2019.06.001

所属专题: 文献

专家论坛

饮食、肠道微生态与结直肠癌
杨佳1, 于君1,()   
  1. 1. 999077 香港中文大学医学院内科与药物治疗学系,消化疾病研究所,消化疾病研究国家重点实验室
  • 收稿日期:2019-06-13 出版日期:2019-12-25
  • 通信作者: 于君

Diet, gut microbiota and colorectal cancer

Jia Yang1, Jun Yu1,()   

  1. 1. Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China
  • Received:2019-06-13 Published:2019-12-25
  • Corresponding author: Jun Yu
  • About author:
    Corresponding author: Yu Jun, Email:
引用本文:

杨佳, 于君. 饮食、肠道微生态与结直肠癌[J]. 中华结直肠疾病电子杂志, 2019, 08(06): 541-545.

Jia Yang, Jun Yu. Diet, gut microbiota and colorectal cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2019, 08(06): 541-545.

结直肠癌是全球最常见的恶性肿瘤之一,在西方国家尤其常见。饮食是结直肠癌的重要影响因素之一。大量的研究证据显示饮食可以通过改变肠道微生态从而影响结直肠癌的发生与发展。它既能通过病原菌产生一系列致癌活动,也能通过改变肠道微生态代谢从而影响肠道上皮细胞。近年来有数据表明,以丁酸盐为代表的短链脂肪酸具有抑制炎症及抗肿瘤作用;而以次级胆汁酸为代表的肠道菌群其他代谢产物,具有促进肿瘤发生发展的作用。在本文中,我们将围绕饮食对肠道微生态及其代谢产物的影响、肠道微生态与结直肠癌的相关作用以及结直肠癌的饮食预防进行介绍和讨论,呼吁未来需要更深入的研究探索饮食、肠道微生态与代谢组学、免疫学、基因宿主反应等的相互作用关系。

Colorectal cancer (CRC) is one of the most common cancer worldwide, especially in the western countries. Diet is one of the most important factors associated with CRC. Accumulating evidence suggests that diet could re-shape the human gut microbiota and contribute to the development of CRC, not only via the pro-tumorigenic activities of specific pathogens but also via the influence of metabolism and function of the whole microbial community, particularly its metabolites. Recent data have shown that short-chain fatty acids, especially butyrate, could suppress inflammation and anti-cancer, whereas other microbial metabolites, such as secondary bile acids, promote colorectal tumorigenesis. In this Review, we discuss the influence of diet on gut microbiota and its metabolites, the interaction between gut microbiota and CRC, and dietary strategies for CRC prevention. More mechanism studies are warranted to further investigate the interplay of gut microbiota with metabolome, immunity and host response.

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018 [J]. CA Cancer J Clin, 2018, 68(1): 7-30.
[2]
O′Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer [J]. Nature Reviews Gastroenterology & Hepatology, 2016, 13(12): 691-706.
[3]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].CA Cancer J Clin, 2018, 68(6): 394-424.
[4]
Xu ZJ, Knight R. Dietary effects on human gut microbiome diversity [J]. Br J Nutr, 2015, 113(S1): 51-55.
[5]
Liang Q, Chiu J, Chen Y, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer [J]. Clin Cancer Res, 2017, 23(8): 2061-2070.
[6]
Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health [J]. Gastroenterology, 2014, 146(6): 1449-1458.
[7]
Turnbaugh PJ, Bäckhed F, Fulton L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome [J].Cell Host Microbe, 2008, 3(4): 213-223.
[8]
Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice [J]. Sci Transl Med, 2009, 1(6): 6ra14.
[9]
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome [J]. Nature, 2014, 505(7484): 559-563.
[10]
O′Keefe SJ, Li JV, Lahti L, et al. Fat, fibre and cancer risk in African Americans and rural Africans[J].Nat Commun, 2015, 6: 6342.
[11]
Zimmer J, Lange B, Frick JS, et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota [J]. Eur J Clin Nutr, 2012, 66(1): 53-60.
[12]
De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa [J]. Proc Natl Acad Sci USA, 2010, 107(33): 14691-14696.
[13]
Ou J, Carbonero F, Zoetendal EG, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans [J]. Am J Clin Nutr, 2013, 98(1): 111-120.
[14]
Silvester KR, Cummings JH. Cummings, does digestibility of meat protein help explain large-bowel cancer risk [J]. Nutrition and Cancer-an International Journal, 1995, 24(3): 279-288.
[15]
Beaumont M, Portune KJ, Steuer N, et al. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans [J]. Am J Clin Nutr, 2017, 106(4): 1005-1019.
[16]
Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health [J]. Mol Nutr Food Res, 2012, 56(1): 184-196.
[17]
Taira T, Yamaguchi S, Takahashi A, et al. Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet [J]. J Clin Biochem Nutr, 2015, 57(3): 212-216.
[18]
Higashimura Y, Naito Y, Takagi T, et al. Protective effect of agaro-oligosaccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice [J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310(6): G367-375.
[19]
Wan Y, Wang F, Yuan J, et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial [J]. Gut, 2019 Feb 19. pii: gutjnl-2018-317609.
[20]
Dove WF, Clipson L, Gould KA, et al. Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status [J]. Cancer Res, 1997, 57(5): 812-814.
[21]
Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-Immune microenvironment [J]. Cell Host & Microbe, 2013, 14(2): 207-215.
[22]
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin [J]. Cell Host & Microbe, 2013, 14(2): 195-206.
[23]
Bultman SJ. Emerging roles of the microbiome in cancer [J].Carcinogenesis, 2014, 35(2): 249-255.
[24]
Burns MB, Lynch J, Starr TK, et al. Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment [J]. Genome Medicine, 2015, 7(1): 55.
[25]
Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota [J]. Science, 2012, 338(6103): 120-123.
[26]
Grivennikov SI, Wang K, Mucida D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth [J]. Nature, 2012, 491(7423): 254-258.
[27]
Toprak NU, Yagci A, Gulluoglu BM, et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer [J]. Clinical Microbiology and Infection, 2006, 12(8): 782-786.
[28]
Uronis JM, Mühlbauer M, Herfarth HH,et al. Modulation of the intestinal microbiota alters colitis-associated Colorectal Cancer Susceptibility [J]. PloS One, 2009, 4(6): e6026.
[29]
Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses [J]. Nature Medicine, 2009, 15(9): 1016-1022.
[30]
Wong SH, Kwong TNY, Chow TC, et al. Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia [J]. Gut, 2017, 66(8): 1441-1448.
[31]
Tsoi H, Chu ESH, Zhang X, et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice [J]. Gastroenterology, 2017, 152(6): 1419-1433.
[32]
Sokol SY. Wnt signaling and dorso-ventral axis specification in vertebrates [J]. Current Opinion in GeNETsics & Development, 1999, 9(4): 405-410.
[33]
Sears CL. Enterotoxigenic bacteroides fragilis: a rogue among symbiotes [J]. Clinical Microbiology Reviews, 2009, 22(2): 349-369.
[34]
Shiryaev SA, Remacle AG, Chernov AV, et al. Substrate cleavage profiling suggests a distinct function of bacteroides fragilis metalloproteinases (fragilysin and metalloproteinase II) at the microbiome-inflammation-cancer interface [J]. Journal of Biological Chemistry, 2013, 288(48): 34956-34967.
[35]
Xinqiang W, Yuanbing W, Liangmei H, et al. Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer [J]. J Cancer, 2018, 9(14): 2510-2517.
[36]
Cao H, Xu M, Dong W, et al. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis [J]. Int J Cancer, 2017, 140(11): 2545-2556.
[37]
Tayyem RF, Bawadi HA, Shehadah I, et al. Dietary patterns and colorectal cancer [J]. Clin Nutr, 2017, 36(3): 848-852.
[38]
Song M, Wu K, Meyerhardt JA, et al. Fiber intake and survival after colorectal cancer diagnosis [J]. JAMA Oncol, 2018, 4(1): 71-79.
[39]
Mehta M, Shike M. Diet and physical activity in the prevention of colorectal cancer [J]. J Natl Compr Canc NETsw, 2014, 12(12): 1721-1726.
[40]
Yao Y, Suo T, Andersson R, et al. Dietary fibre for the prevention of recurrent colorectal adenomas and carcinomas [J]. Cochrane Database Syst Rev, 2017, 1: CD003430.
[41]
He X, Wu K, Zhang X, et al. Dietary intake of fiber, whole grains and risk of colorectal cancer: An updated analysis according to food sources, tumor location and molecular subtypes in two large US cohorts [J]. Int J Cancer, 2018, 143(2): 298-306.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 付佳, 肖海敏, 武曦, 冯涛, 师帅. 年龄校正查尔森合并症指数对腹腔镜结直肠癌围手术期并发症的预测价值[J]. 中华普通外科学文献(电子版), 2023, 17(05): 336-341.
[5] 薛永婷, 高峰, 王雅楠, 屈莲平. 溶瘤病毒治疗在结直肠癌中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(05): 380-384.
[6] 武慧铭, 郭仁凯, 李辉宇. 机器人辅助下经自然腔道取标本手术治疗结直肠癌安全性和有效性的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(05): 395-400.
[7] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[8] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[9] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[10] 汤鹏昊, 张武. 肠道微生态与肝移植围手术期并发症相关研究进展[J]. 中华移植杂志(电子版), 2023, 17(05): 303-307.
[11] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[12] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[13] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[14] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[15] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
阅读次数
全文


摘要