切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2019, Vol. 08 ›› Issue (06) : 541 -545. doi: 10.3877/cma.j.issn.2095-3224.2019.06.001

所属专题: 文献

专家论坛

饮食、肠道微生态与结直肠癌
杨佳1, 于君1,()   
  1. 1. 999077 香港中文大学医学院内科与药物治疗学系,消化疾病研究所,消化疾病研究国家重点实验室
  • 收稿日期:2019-06-13 出版日期:2019-12-25
  • 通信作者: 于君

Diet, gut microbiota and colorectal cancer

Jia Yang1, Jun Yu1,()   

  1. 1. Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China
  • Received:2019-06-13 Published:2019-12-25
  • Corresponding author: Jun Yu
  • About author:
    Corresponding author: Yu Jun, Email:
引用本文:

杨佳, 于君. 饮食、肠道微生态与结直肠癌[J/OL]. 中华结直肠疾病电子杂志, 2019, 08(06): 541-545.

Jia Yang, Jun Yu. Diet, gut microbiota and colorectal cancer[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2019, 08(06): 541-545.

结直肠癌是全球最常见的恶性肿瘤之一,在西方国家尤其常见。饮食是结直肠癌的重要影响因素之一。大量的研究证据显示饮食可以通过改变肠道微生态从而影响结直肠癌的发生与发展。它既能通过病原菌产生一系列致癌活动,也能通过改变肠道微生态代谢从而影响肠道上皮细胞。近年来有数据表明,以丁酸盐为代表的短链脂肪酸具有抑制炎症及抗肿瘤作用;而以次级胆汁酸为代表的肠道菌群其他代谢产物,具有促进肿瘤发生发展的作用。在本文中,我们将围绕饮食对肠道微生态及其代谢产物的影响、肠道微生态与结直肠癌的相关作用以及结直肠癌的饮食预防进行介绍和讨论,呼吁未来需要更深入的研究探索饮食、肠道微生态与代谢组学、免疫学、基因宿主反应等的相互作用关系。

Colorectal cancer (CRC) is one of the most common cancer worldwide, especially in the western countries. Diet is one of the most important factors associated with CRC. Accumulating evidence suggests that diet could re-shape the human gut microbiota and contribute to the development of CRC, not only via the pro-tumorigenic activities of specific pathogens but also via the influence of metabolism and function of the whole microbial community, particularly its metabolites. Recent data have shown that short-chain fatty acids, especially butyrate, could suppress inflammation and anti-cancer, whereas other microbial metabolites, such as secondary bile acids, promote colorectal tumorigenesis. In this Review, we discuss the influence of diet on gut microbiota and its metabolites, the interaction between gut microbiota and CRC, and dietary strategies for CRC prevention. More mechanism studies are warranted to further investigate the interplay of gut microbiota with metabolome, immunity and host response.

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018 [J]. CA Cancer J Clin, 2018, 68(1): 7-30.
[2]
O′Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer [J]. Nature Reviews Gastroenterology & Hepatology, 2016, 13(12): 691-706.
[3]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].CA Cancer J Clin, 2018, 68(6): 394-424.
[4]
Xu ZJ, Knight R. Dietary effects on human gut microbiome diversity [J]. Br J Nutr, 2015, 113(S1): 51-55.
[5]
Liang Q, Chiu J, Chen Y, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer [J]. Clin Cancer Res, 2017, 23(8): 2061-2070.
[6]
Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health [J]. Gastroenterology, 2014, 146(6): 1449-1458.
[7]
Turnbaugh PJ, Bäckhed F, Fulton L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome [J].Cell Host Microbe, 2008, 3(4): 213-223.
[8]
Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice [J]. Sci Transl Med, 2009, 1(6): 6ra14.
[9]
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome [J]. Nature, 2014, 505(7484): 559-563.
[10]
O′Keefe SJ, Li JV, Lahti L, et al. Fat, fibre and cancer risk in African Americans and rural Africans[J].Nat Commun, 2015, 6: 6342.
[11]
Zimmer J, Lange B, Frick JS, et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota [J]. Eur J Clin Nutr, 2012, 66(1): 53-60.
[12]
De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa [J]. Proc Natl Acad Sci USA, 2010, 107(33): 14691-14696.
[13]
Ou J, Carbonero F, Zoetendal EG, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans [J]. Am J Clin Nutr, 2013, 98(1): 111-120.
[14]
Silvester KR, Cummings JH. Cummings, does digestibility of meat protein help explain large-bowel cancer risk [J]. Nutrition and Cancer-an International Journal, 1995, 24(3): 279-288.
[15]
Beaumont M, Portune KJ, Steuer N, et al. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans [J]. Am J Clin Nutr, 2017, 106(4): 1005-1019.
[16]
Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health [J]. Mol Nutr Food Res, 2012, 56(1): 184-196.
[17]
Taira T, Yamaguchi S, Takahashi A, et al. Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet [J]. J Clin Biochem Nutr, 2015, 57(3): 212-216.
[18]
Higashimura Y, Naito Y, Takagi T, et al. Protective effect of agaro-oligosaccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice [J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310(6): G367-375.
[19]
Wan Y, Wang F, Yuan J, et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial [J]. Gut, 2019 Feb 19. pii: gutjnl-2018-317609.
[20]
Dove WF, Clipson L, Gould KA, et al. Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status [J]. Cancer Res, 1997, 57(5): 812-814.
[21]
Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-Immune microenvironment [J]. Cell Host & Microbe, 2013, 14(2): 207-215.
[22]
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin [J]. Cell Host & Microbe, 2013, 14(2): 195-206.
[23]
Bultman SJ. Emerging roles of the microbiome in cancer [J].Carcinogenesis, 2014, 35(2): 249-255.
[24]
Burns MB, Lynch J, Starr TK, et al. Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment [J]. Genome Medicine, 2015, 7(1): 55.
[25]
Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota [J]. Science, 2012, 338(6103): 120-123.
[26]
Grivennikov SI, Wang K, Mucida D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth [J]. Nature, 2012, 491(7423): 254-258.
[27]
Toprak NU, Yagci A, Gulluoglu BM, et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer [J]. Clinical Microbiology and Infection, 2006, 12(8): 782-786.
[28]
Uronis JM, Mühlbauer M, Herfarth HH,et al. Modulation of the intestinal microbiota alters colitis-associated Colorectal Cancer Susceptibility [J]. PloS One, 2009, 4(6): e6026.
[29]
Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses [J]. Nature Medicine, 2009, 15(9): 1016-1022.
[30]
Wong SH, Kwong TNY, Chow TC, et al. Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia [J]. Gut, 2017, 66(8): 1441-1448.
[31]
Tsoi H, Chu ESH, Zhang X, et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice [J]. Gastroenterology, 2017, 152(6): 1419-1433.
[32]
Sokol SY. Wnt signaling and dorso-ventral axis specification in vertebrates [J]. Current Opinion in GeNETsics & Development, 1999, 9(4): 405-410.
[33]
Sears CL. Enterotoxigenic bacteroides fragilis: a rogue among symbiotes [J]. Clinical Microbiology Reviews, 2009, 22(2): 349-369.
[34]
Shiryaev SA, Remacle AG, Chernov AV, et al. Substrate cleavage profiling suggests a distinct function of bacteroides fragilis metalloproteinases (fragilysin and metalloproteinase II) at the microbiome-inflammation-cancer interface [J]. Journal of Biological Chemistry, 2013, 288(48): 34956-34967.
[35]
Xinqiang W, Yuanbing W, Liangmei H, et al. Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer [J]. J Cancer, 2018, 9(14): 2510-2517.
[36]
Cao H, Xu M, Dong W, et al. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis [J]. Int J Cancer, 2017, 140(11): 2545-2556.
[37]
Tayyem RF, Bawadi HA, Shehadah I, et al. Dietary patterns and colorectal cancer [J]. Clin Nutr, 2017, 36(3): 848-852.
[38]
Song M, Wu K, Meyerhardt JA, et al. Fiber intake and survival after colorectal cancer diagnosis [J]. JAMA Oncol, 2018, 4(1): 71-79.
[39]
Mehta M, Shike M. Diet and physical activity in the prevention of colorectal cancer [J]. J Natl Compr Canc NETsw, 2014, 12(12): 1721-1726.
[40]
Yao Y, Suo T, Andersson R, et al. Dietary fibre for the prevention of recurrent colorectal adenomas and carcinomas [J]. Cochrane Database Syst Rev, 2017, 1: CD003430.
[41]
He X, Wu K, Zhang X, et al. Dietary intake of fiber, whole grains and risk of colorectal cancer: An updated analysis according to food sources, tumor location and molecular subtypes in two large US cohorts [J]. Int J Cancer, 2018, 143(2): 298-306.
[1] 罗青杉, 梅海涛, 郝家领, 蔡锦锋, 周润楷, 温玉刚. 连接蛋白43通过调控细胞周期抑制结直肠癌的增殖机制研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 344-349.
[2] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[3] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[4] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[5] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[6] 赵磊, 刘文志, 林峰, 于剑, 孙铭骏, 崔佑刚, 张旭, 衣宇鹏, 于宝胜, 冯宁. 深部热疗在改善结直肠癌术后辅助化疗副反应及生活质量中的作用研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 488-493.
[7] 黄海洋, 邝永龙, 陈嘉胜. 基层医院结直肠肿瘤经自然腔道取标本手术30 例分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 510-518.
[8] 张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.
[9] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
[10] 任佳琪, 刁德昌, 何自衍, 张雪阳, 唐新, 李文娟, 李洪明, 卢新泉, 易小江. 网膜融合线导向的脾曲游离技术在左半结肠癌根治术中的应用[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 362-367.
[11] 张迪, 王春霞, 张学东, 李发馨, 庞淅文, 陈一锋, 张维胜, 王涛. 梗阻性左半结直肠癌自膨式金属支架置入后行腹腔镜手术与开腹手术的短期临床疗效比较[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 375-380.
[12] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[13] 李佳莹, 王旭丹, 梁雪, 张雷, 李佳英. 1990~2021年中国结直肠癌死亡趋势分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 274-279.
[14] 戈伟, 陈刚. 纳米炭导航行淋巴示踪在结直肠癌TNM分期中淋巴分期价值的临床研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 288-293.
[15] 崔精, 鲍一帆, 沈晓明, 杨增辉, 高森, 鲍传庆. 结直肠癌中circMFSD12对肿瘤细胞功能及5-FU敏感性的调控[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 294-302.
阅读次数
全文


摘要