[1] |
崔莲, 刘容锐, 陈玉玲, 等. 不同治疗模式对结直肠癌患者预后影响的回顾性分析 [J]. 中国肿瘤临床与康复, 2016, 23(9): 1030-1035.
|
[2] |
李道娟, 李倩, 贺宇彤. 结直肠癌流行病学趋势 [J]. 肿瘤防治研究, 2015, 42(3): 305-310.
|
[3] |
冯志刚. 伊立替康联合氟尿嘧啶治疗晚期结直肠癌的临床疗效观察 [J]. 中国伤残医学, 2013, 21(7): 198-199.
|
[4] |
Yong Liu, Jacqueline Ramı´rez, Larry House, et al. The UGT1A1*28 polymorphism correlates with erlotinib′s effect on SN-38 glucuronidation [J]. European Journal of Cancer, 2010, 46 (11): 2097-2103.
|
[5] |
Michael M, Brittain M, Nagai J, et al. Phase Ⅱ study of activated charcoal to prevent irinotecan-induced diarrhea [J]. J Clin Oncol, 2004, 22(21): 4410-4417.
|
[6] |
Hsiang YH, Liu LF. Identification of mammalian DNA topoisomerase Ⅰ as an intracellular target of the anticancer drug camptothecin [J]. Cancer Res, 1988, 48(7): 1722-1726.
|
[7] |
Kawato Y, Aonuma M, Hirota, et al. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11 [J]. Cancer Res, 1991, 51(16): 4187-4191.
|
[8] |
季楚舒, 何义富, 胡冰, 等. UGT1A1*28基因多态性与晚期结直肠癌伊立替康化疗疗效及不良反应的关系 [J]. 肿瘤, 2010, 30(10): 870-874.
|
[9] |
Hamidovic A, Hahn K, Kolesar J, et al. Clinical significance of ABCB1 genotyping in oncology [J]. J Oncol Pharm Pract, 2010, 16 (1): 39-44.
|
[10] |
Fromm MF. The influence of MDR1 polymorphisms on P-glycoprotein expression and function in humans [J]. Adv Drug Deliv Rev, 2002, 54(10): 1295-1310.
|
[11] |
Hoffmeyer S, Burk O, Von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo [J]. Proc Natl Acad Sci, 2000, 97(7): 3473-3478.
|
[12] |
Cascorbi I, Gerloff T, Johne A, et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects [J]. Clin Pharmacol Ther, 2001, 69(3): 169-174.
|
[13] |
Pan JH, Han JX, Wu JM, et al. MDR1 single nucleotide polymorphisms predict response to vinorelbine-based chemotherapy in patients with non-small cell lung cancer [J]. Respiration, 2008, 75(4): 380-385.
|
[14] |
Chang H, Rha SY, Jeung HC, et al. Association of the ABCB1 3435C/T polymorphism and treatment outcomes in advanced gastric cancer patients treated with paclitaxel-based chemotherapy [J]. Oncol Rep, 2010, 23(1): 271-278.
|
[15] |
T Sakaeda, T Nakamura, K Okumura. MDR1 genotype-related pharmacokinetics and pharmacodynamics [J]. Biol Pharm Bull, 2002, 25(11): 1391-1400.
|
[16] |
Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications [J]. Clinical pharmacokinetics, 2003, 42 (1): 59-98.
|
[17] |
Cortejoso L, Garcia MI, Garcia-Alfonso P, et al. Differential toxicity biomarkers for irinotecan- and oxaliplatin-containing chemotherapy in colorectal cancer [J]. Cancer chemotherapy and pharmacology, 2013, 71 (6): 1463-1472.
|
[18] |
Glimelius B, Garmo H, Berglund A, et al. Prediction of irinotecan and 5-fluorouracil toxicity and response in patients with advanced colorectal cancer [J]. The Pharmacogenomics Journal, 2011, 11 (1): 61-71.
|
[19] |
Ychou M, Raoul JL, Desseigne F, et al. High-dose, single-agent irinotecan as first-line therapy in the treatment of metastatic colorectal cancer [J]. Cancer Chemother Pharmacol, 2002, 50 (5): 383-391.
|
[20] |
Innocenti F, Kroetz DL, Schuetz E, et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics [J]. J Clin Oncol, 2009, 27 (16): 2604-2614.
|
[21] |
Yan L, Wang XF, Wei LM, et al. Effects of UGT1A1*6, UGT1A1*28, and ABCB1-3435C>T polymorphisms on irinotecan induced toxicity in Chinese cancer patients [J]. International Journal of Clinical Pharmacology and Therapeutics, 2016, 54 (3): 193-199.
|