切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2022, Vol. 11 ›› Issue (01) : 65 -69. doi: 10.3877/cma.j.issn.2095-3224.2022.01.010

综述

长链非编码RNA在结直肠癌中的研究进展
朱亿豪1, 汤庆超1,()   
  1. 1. 150081 哈尔滨医科大学附属第二医院结直肠肿瘤外科
  • 收稿日期:2021-01-01 出版日期:2022-02-25
  • 通信作者: 汤庆超
  • 基金资助:
    吴阶平医学基金会(320.2710.1849)

Research progress of long non-coding RNA in colorectal cancer

Yihao Zhu1, Qingchao Tang1,()   

  1. 1. Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
  • Received:2021-01-01 Published:2022-02-25
  • Corresponding author: Qingchao Tang
引用本文:

朱亿豪, 汤庆超. 长链非编码RNA在结直肠癌中的研究进展[J]. 中华结直肠疾病电子杂志, 2022, 11(01): 65-69.

Yihao Zhu, Qingchao Tang. Research progress of long non-coding RNA in colorectal cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2022, 11(01): 65-69.

长链非编码RNA(LncRNA)是近十年来肿瘤领域分子机制研究的热点之一,被证实在生物体内对基因的表达具有调控作用,与肿瘤的发生与发展密切相关。结直肠癌是一种严重危害人类健康的恶性肿瘤,研究发现许多LncRNA在结直肠癌中表达失调。异常表达的LncRNA作为关键的调控因子,参与了多种生物学过程,影响肿瘤细胞的增殖和凋亡、侵袭转移及调节肿瘤耐药。研究LncRNA在肠癌中的作用机制可以为结直肠癌临床治疗提供一些新思路。此外,LncRNA还可作为一种潜在的生物标志物用于结直肠癌早期诊断及预后评估。

Long non-coding RNA has been one of the hot topics in the field of tumor molecular mechanism research in recent ten years. It has been proved that it regulates gene expression in organism, which is closely related to the occurrence and development of tumor. Colorectal cancer is a kind of malignant tumor that seriously harms people's health. Studies have found that the expression of LncRNA is dysregulated in colorectal cancer, and the abnormally expressed LncRNA, as a key regulatory factor, can participate in a variety of biological processes, affecting the proliferation and apoptosis of tumor cells, invasion and metastasis, and the regulation of tumor drug resistance, providing a new idea for the clinical treatment of colorectal cancer. In addition, LncRNA can also be used as a potential biomarker for early diagnosis and prognosis assessment of colorectal cancer.

[1]
Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells[J]. Nature, 2012, 489(7414): 101-108.
[2]
Devaux Y, Zangrando J, Schroen B, et al. Long noncoding RNAs in cardiac development and ageing[J]. Nat Rev Cardiol, 2015, 12(7): 415-425.
[3]
Hall LL, Lawrence JB. XIST RNA and architecture of the inactive X chromosome: implications for the repeat genome[J]. Cold Spring Harb Symp Quant Biol, 2010, 75: 345-356.
[4]
Jégu T, Aeby E, Lee JT. The X chromosome in space[J]. Nat Rev Genet, 2017, 18(6): 377-389.
[5]
Zhang LF, Huynh KD, Lee JT. Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing[J]. Cell, 2007, 129(4): 693-706.
[6]
Zhu Y, Hu H, Yuan Z, et al. LncRNA NEAT1 remodels chromatin to promote the 5-Fu resistance by maintaining colorectal cancer stemness[J]. Cell Death Dis, 2020, 11(11): 962.
[7]
Zhao J, Sun BK, Erwin JA, et al. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome[J]. Science, 2008, 322(5902): 750-756.
[8]
Jain AK, Xi Y, McCarthy R, et al. LncPRESS1 is a p53-Regulated LncRNA that safeguards pluripotency by disrupting SIRT6-mediated de-acetylation of histone H3K56[J]. Mol Cell, 2016, 64(5): 967-981.
[9]
He W, Zhong G, Jiang N. et al. Long noncoding RNA BLACAT2 promotes bladder cancer-associated lymphangiogenesis and lymphatic metastasis[J]. J Clin Invest, 2018, 128(2): 861-875.
[10]
Tian T, Lv X, Pan G, et al. Long noncoding RNA MPRL promotes mitochondrial fission and cisplatin chemosensitivity via disruption of pre-miRNA processing[J]. Clin Cancer Res, 2019, 25(12): 3673-3688.
[11]
Lu C, Wei Y, Wang X. et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma[J]. Mol Cancer, 2020, 19(1): 28.
[12]
Yuan JH, Liu XN, Wang TT. et al. The MBNL3 splicing factor promotes hepatocellular carcinoma by increasing PXN expression through the alternative splicing of lncRNA-PXN-AS1[J]. Nat Cell Biol, 2017, 19(7): 820-832.
[13]
Jain AK, Xi Y, McCarthy R, et al. LncPRESS1 is a p53-Regulated lncRNA that safeguards pluripotency by disrupting SIRT6-mediated de-acetylation of histone H3K56[J]. Mol Cell, 2016, 64(5): 967-981.
[14]
Liu B, Sun L, Liu Q, et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis[J]. Cancer Cell, 2015, 27(3): 370-381.
[15]
Huang JZ, Chen M, Chen D, et al. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth[J]. Mol Cell, 2017, 68(1): 171-184, e6.
[16]
Zhang M, Weng W, Zhang Q, et al. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5[J]. J Hematol Oncol, 2018, 11(1): 113.
[17]
Cheng X, Xu X, Chen D, et al. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer[J]. Biomed Pharmacother, 2019, 110: 473-481.
[18]
Luo Y, Chen JJ, Lv Q, et al. Long non-coding RNA NEAT1 promotes colorectal cancer progression by competitively binding miR-34a with SIRT1 and enhancing the Wnt/β-catenin signaling pathway[J]. Cancer Lett, 2019, 440-441: 11-22.
[19]
Peng W, Wang Z, Fan H. LncRNA NEAT1 impacts cell proliferation and apoptosis of colorectal cancer via regulation of Akt signaling[J]. Pathol Oncol Res, 2017, 23(3): 651-656.
[20]
Yang MH, Zhao L, Wang L, et al. Nuclear lncRNA HOXD-AS1 suppresses colorectal carcinoma growth and metastasis via inhibiting HOXD3-induced integrin-β3 transcriptional activating and MAPK/AKT signalling[J]. Mol Cancer, 2019, 18(1): 31.
[21]
Ghasemi F, Shafiee M, Banikazemi Z, et al. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells[J]. Pathol Res Practice, 2019, 215: 152556.
[22]
Zhong ME, Chen Y, Zhang G, et al. LncRNA H19 regulates PI3K-Akt signal pathway by functioning as a ceRNA and predicts poor prognosis in colorectal cancer: integrative analysis of dysregulated ncRNA-associated ceRNA network[J]. Cancer Cell Int, 2019, 19: 148.
[23]
Sun C, Ma P, Wang Y, et al. KLF15 inhibits cell proliferation in gastric cancer cells via up-regulating CDKN1A/p21 and CDKN1C/p57 expression[J]. Dig Dis Sci, 2017, 62(6): 1518-1526.
[24]
Bykov VJN, Eriksson SE, Bianchi J, et al. Targeting mutant p53 for efficient cancer therapy[J]. Nat Rev Cancer, 2018, 18(2): 89-102.
[25]
Hientz K, Mohr A, Bhakta-Guha D, et al. The role of p53 in cancer drug resistance and targeted chemotherapy[J]. Oncotarget, 2017, 8(5): 8921-8946.
[26]
Thorenoor N, Faltejskova-Vychytilova P, Hombach S, et al. Long non-coding RNA ZFAS1 interacts with CDK1 and is involved in p53-dependent cell cycle control and apoptosis in colorectal cancer[J]. Oncotarget, 2016, 7(1): 622-637.
[27]
Liu F, Wang X, Liu H, et al. LncRNA BX357664 inhibits cell proliferation and invasion and promotes cell apoptosis in human colorectal cancer cells[J]. Oncol Lett, 2018, 15(6): 8237-8244.
[28]
Cui C, Zhai D, Cai L, et al. Long noncoding RNA HEIH promotes colorectal cancer tumorigenesis via counteracting miR-939‒mediated transcriptional repression of Bcl-xL[J]. Cancer Res Treat, 2018, 50(3): 992-1008.
[29]
Zhang W, Yuan W, Song J, et al. LncRna CPS1-IT1 suppresses cell proliferation, invasion and metastasis in colorectal cancer[J]. Cell Physiol Biochem, 2017, 44(2): 567-580.
[30]
Xue J, Liao L, Yin F, et al. LncRNA AB073614 induces epithelial- mesenchymal transition of colorectal cancer cells via regulating the JAK/STAT3 pathway[J]. Cancer Biomark, 2018, 21(4): 849-858.
[31]
Zhang H, Song Y, Yang C, et al. Overexpression of lncRNA TUSC7 reduces cell migration and invasion in colorectal cancer[J]. Oncol Rep, 2019, 41(6): 3386-3392.
[32]
Márquez-Jurado S, Díaz-Colunga J, das Neves RP, et al. Mitochondrial levels determine variability in cell death by modulating apoptotic gene expression[J]. Nat Commun, 2018, 9(1): 389.
[33]
Stintzing S, Modest DP, Rossius L, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab for metastatic colorectal cancer (FIRE-3): a post-hoc analysis of tumour dynamics in the final RAS wild-type subgroup of this randomised open-label phase 3 trial[J]. The Lancet Oncology, 2016, 17(10): 1426-1434.
[34]
Longley DB, Allen WL, Johnston PG. Drug resistance, predictive markers and pharmacogenomics in colorectal cancer[J]. Biochim Biophys Acta, 2006, 1766(2): 184-196.
[35]
Wang M, Han D, Yuan Z, et al. Long non-coding RNA H19 confers 5-Fu resistance in colorectal cancer by promoting SIRT1-mediated autophagy[J]. Cell Death Dis, 2018, 9(12): 1149.
[36]
Jiang X, Li Q, Zhang S, et al. Long noncoding RNA GIHCG induces cancer progression and chemoresistance and indicates poor prognosis in colorectal cancer[J]. Onco Targets Ther, 2019, 12: 1059-1070.
[37]
Dobreva G, Chahrour M, Dautzenberg M, et al. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation[J]. Cell, 2006, 125(5): 971-986.
[38]
Xu M, Xu X, Pan B, et al. LncRNA SATB2-AS1 inhibits tumor metastasis and affects the tumor immune cell microenvironment in colorectal cancer by regulating SATB2[J]. Mol Cancer, 2019, 18: 1-16.
[39]
Tang L, Li Q, Ge X, et al. LncRNA GAS5 inhibits progression of colorectal cancer by regulating M1/M2 macrophages polarization. AIP Conference Proceedings[J]. AIP Conference Proceedings, 2019, 2110(1): 020013.
[40]
Yu X, Yuan Z, Yang Z, et al. The novel long noncoding RNA u50535 promotes colorectal cancer growth and metastasis by regulating CCL20[J]. Cell Death Dis, 2018, 9(7): 751.
[41]
Liang ZX, Liu HS, Wang FW, et al. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization[J]. Cell Death Dis, 2019, (10): 1-17.
[42]
Zhao W, Song M, Zhang J, et al. Combined identification of long non-coding RNA CCAT1 and HOTAIR in serum as an effective screening for colorectal carcinoma[J]. Int J Clin Exp Pathol, 2015, 8(11): 14131-14140.
[43]
Wan L, Kong J, Tang J, et al. HOTAIRM1 as a potential biomarker for diagnosis of colorectal cancer functions the role in the tumour suppressor[J]. J Cell Mol Med, 2016, (20): 2036-2044.
[44]
Ouyang W, Ren L, Liu G, et al. LncRNA MIR4435-2HG predicts poor prognosis in patients with colorectal cancer[J]. Peer J, 2019, 7: e6683.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 付佳, 肖海敏, 武曦, 冯涛, 师帅. 年龄校正查尔森合并症指数对腹腔镜结直肠癌围手术期并发症的预测价值[J]. 中华普通外科学文献(电子版), 2023, 17(05): 336-341.
[5] 薛永婷, 高峰, 王雅楠, 屈莲平. 溶瘤病毒治疗在结直肠癌中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(05): 380-384.
[6] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[7] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[8] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[9] 常剑, 邱峰, 毛郁琪. 摄食抑制因子-1与腹腔镜结直肠癌根治术后肝转移的关系分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 502-505.
[10] 王晓燕, 肖佑, 肖戈, 王真权. 老年结直肠癌肺转移CT特征及高危因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 506-509.
[11] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[12] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[13] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[14] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[15] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
阅读次数
全文


摘要