切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2021, Vol. 10 ›› Issue (06) : 576 -584. doi: 10.3877/cma.j.issn.2095-3224.2021.06.003

论著

列线图预测同时性转移结直肠癌患者的生存并构建风险分级系统
刘恩瑞1, 关旭1, 郭雅琪2, 魏然1, 马晓龙3, 姜争1, 刘正1, 陈瑛罡4,(), 王锡山1,()   
  1. 1. 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院结直肠外科
    2. 266003 青岛大学附属医院麻醉科
    3. 21008 南京大学医学院附属鼓楼医院普通外科
    4. 518116 国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院深圳医院胃肠外科
  • 收稿日期:2021-05-31 出版日期:2021-12-25
  • 通信作者: 陈瑛罡, 王锡山
  • 基金资助:
    中国医学科学院创新基金(CIFMS)(2016-I2M-1-001); 深圳市‘医疗卫生三名工程’(SZSM201911012)

Developing a novel nomogram and a risk classification system predicting the survival in synchronous metastatic colorectal cancer: a SEER population-based study

Enrui Liu1, Xu Guan1, Yaqi Guo2, Ran Wei1, Xiaolong Ma3, Zheng Jiang1, Zheng Liu1, Yinggang Chen4,(), Xishan Wang1,()   

  1. 1. Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Bejing 100021, China
    2. Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266003, China
    3. Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 21008, China
    4. Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
  • Received:2021-05-31 Published:2021-12-25
  • Corresponding author: Yinggang Chen, Xishan Wang
引用本文:

刘恩瑞, 关旭, 郭雅琪, 魏然, 马晓龙, 姜争, 刘正, 陈瑛罡, 王锡山. 列线图预测同时性转移结直肠癌患者的生存并构建风险分级系统[J/OL]. 中华结直肠疾病电子杂志, 2021, 10(06): 576-584.

Enrui Liu, Xu Guan, Yaqi Guo, Ran Wei, Xiaolong Ma, Zheng Jiang, Zheng Liu, Yinggang Chen, Xishan Wang. Developing a novel nomogram and a risk classification system predicting the survival in synchronous metastatic colorectal cancer: a SEER population-based study[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2021, 10(06): 576-584.

目的

为了预测肿瘤特异性生存期(CSS),我们开发了一种新的列线图模型和风险分级系统来对转移性结直肠癌(mCRC)患者的风险水平进行分类。

方法

数据提取自2010年~2015年的美国Surveillance,Epidemiology,and End Results(SEER)数据库。所有符合条件的病例被随机分为训练队列和验证队列。采用Cox比例风险模型探讨CSS的独立危险因素。开发了一种新的列线图模型来预测CSS,并通过内部验证和外部验证进行评估。

结果

利用多变量Cox比例风险模型,确定CSS的独立危险因素。然后根据这些因素开发新的CSS列线图。该列线图的一致性指数(C-index)为0.718(95%CI:0.712~0.725),验证队列的一致性指数为0.722(95%CI:0.711~0.732),表明良好的鉴别能力,且优于TNM分期(C-index:训练集,0.533,95%CI,0.525~0.540;验证集,0.524,95%CI,0.513~0.535)。校正图和临床决策曲线(DCA)具有良好的一致性和良好的潜在临床效度。风险分级系统将所有患者分为三组,Kaplan-Meier曲线显示不同组间CSS具有良好的分层和区分能力。在总队列中,低危组、中危组和高危组患者的中位CSS分别为36个月(95%CI:34.987~37.013)、18个月(95%CI:17.273~18.727)和5个月(95%CI:4.503~5.497)。

结论

我们开发了一种新的列线图模型来预测同时性mCRC患者的CSS。此外,风险分级系统有助于准确评估预后和指导治疗。

Objective

To predict cancer-specific survival (CSS), we developed a novel nomogram model and a risk classification system for classifying risk levels of metastatic colorectal cancer (mCRC) patients.

Methods

The data was extracted from the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) database between 2010 to 2015. All eligible cases were randomly divided into training and validating cohorts. Cox proportional hazards model was used to explore the independent risk factors for CSS. A novel nomogram model was developed to predict the CSS and evaluated via internal and external validations.

Results

Using the multivariate Cox proportional hazards model, the independent risk factors were identified for CSS. Then a novel nomogram was developed for CSS based on such factors. The concordance indexes (C-index) were 0.718 (95%CI: 0.712~0.725) for this nomogram and 0.722 (95%CI: 0.711~0.732) for the validating cohort, indicating a good discrimination. The calibration plots and decision curve analysis (DCA) showed good consistency and nice potential clinical validity. A risk classification system divided all patients into three groups and Kaplan-Meier curves indicated good stratification and discrimination for CSS among different groups. In the total cohorts, the median CSS of patients in the low-risk, intermediate-risk, and high-risk groups was 36 months (95%CI: 34.987~37.013), 18 months (95%CI: 17.273~18.727), and 5 months (95%CI: 4.503~5.497), respectively.

Conclusions

We developed a novel nomogram model to predict the CSS for synchronous mCRC patients. Furthermore, a risk classification system could contribute to accurately assessing the prognosis and guiding treatment.

表1 人口统计学特征[例(%)]
变量 总队列(n=15 838) 训练队列(n=11 088) 验证队列(n=4 750) χ2 P
种族 1.360 0.507

黑色人种

2 303(14.5) 1 590(14.3) 713(15.0)

白色人种

1 2075(76.2) 8 480(76.5) 3 595(75.7)

其他

1 460(9.2) 1 018(9.2) 442(9.3)
性别 0.027 0.869

男性

8 560(54.0) 5 988(54.0) 2 572(54.1)

女性

7 278(46.0) 5 100(46.0) 2 178(45.9)
诊断时年龄(岁) 1.730 0.188

<70

10 735(67.8) 7 480(67.5) 3 255(68.5)

≥70

5 103(32.2) 3 608(32.5) 1 495(31.5)
原发肿瘤位置 0.264 0.607

结肠

7 063(44.6) 4 930(44.5) 2 133(44.9)

直肠

8 775(55.4) 6 158(55.5) 2 617(55.1)
肿瘤分化 0.014 0.906

Ⅰ~Ⅱ

11 127(70.3) 7 793(70.3) 3 334(70.2)

Ⅲ~Ⅳ

4 711(29.7) 3 295(29.7) 1 416(29.8)
T分期 0.080 0.777

1~2

2 079(13.1) 1 461(13.2) 618(13.0)

3~4

13 759(86.9) 9 627(86.8) 4 132(87.0)
N分期 0.576 0.448

0

4 209(26.6) 2 966(26.7) 1 243(26.2)

1~2

11 629(73.4) 8 122(73.3) 3 507(73.8)
CEA状态 2.721 0.099

阳性

12 378(78.2) 8 705(78.5) 3 673(77.3)

阴性

3 460(21.8) 2 383(21.5) 1 077(22.7)
肝转移 0.286 0.593

4 731(29.9) 3 298(29.7) 1 433(30.2)

11 107(70.1) 7 790(70.3) 3 317(69.8)
肺转移 2.202 0.138

12 673(80.0) 8 838(79.7) 3 835(80.7)

3 165(20.0) 2 250(20.3) 915(19.3)
骨转移 0.724 0.395

15 226(96.1) 10 669(96.2) 4 557(95.9)

612(3.9) 419(3.8) 193(4.1)
脑转移 1.032 0.310

15 682(99.0) 10 973(99.0) 4 709(99.1)

156(1.0) 115(1.0) 41(0.9)
手术 0.014 0.906

3 495(22.1) 2 444(22.0) 1 051(22.1)

12 343(77.9) 8 644(78.0) 3 699(77.9)
化疗 0.026 0.872

无/不详

4 235(26.7) 2 969(26.8) 1 266(26.7)

11 603(73.3) 8 119(73.2) 3 484(73.3)
表2 基于训练队列的COX多因素分析
图1 列线图预测转移性结直肠癌患者的肿瘤特异性生存(CSS)
表3 基于训练队列构建Nomogram预测模型的回归系数和预估评分
图2 基于mCRC患者CSS的校准曲线。2A~2C:基于训练队列1年,2年和3年CSS的校准曲线;2D~2F:基于验证队列1年,2年和3年CSS的校准曲线
图3 列线图模型预测mCRC患者CSS的临床决策曲线。3A~3C:基于训练队列1年,2年和3年CSS的临床决策曲线;3D~3F:基于验证队列1年,2年和3年CSS的临床决策曲线
图4 利用X-tile软件计算最优截断值并建立风险分级系统。4A~4B:预测总分数的最优截断值,低危组(评分:0~164),中危组(评分:165~247),高危组(评分:248~480);4C:根据训练队列的CSS绘制不同风险等级的Kaplan-Meier曲线
表4 基于总队列分析不同风险等级患者的肿瘤特异性生存率
图5 根据总队列的CSS绘制不同风险等级的Kaplan-Meier曲线。5A:总队列;5B:训练队列;5C:验证队列
[1]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[2]
Brenner H, Kloor M, Pox CP. Colorectal cancer[J]. Lancet, 2014, 383(9927): 1490-1502.
[3]
Arnold M, Sierra MS, Laversanne M, et al. Global patterns and trends in colorectal cancer incidence and mortality[J]. Gut, 2017, 66(4): 683-691.
[4]
Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017[J]. CA Cancer J Clin, 2017, 67(3): 177-193.
[5]
Suthananthan AE, Bhandari M, Platell C. Influence of primary site on metastatic distribution and survival in stage Ⅳ colorectal cancer[J]. ANZ J Surg, 2018, 88(5): 445-449.
[6]
Go PH, Klaassen Z, Meadows MC, et al. Gastrointestinal cancer and brain metastasis: a rare and ominous sign[J]. Cancer, 2011, 117(16): 3630-3640.
[7]
Schouten LJ, Rutten J, Huveneers HA, et al. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma[J]. Cancer, 2002, 94(10): 2698-2705.
[8]
Franzese C, Comito T, Franceschini D, et al. Recursive partitioning model-based analysis for survival of colorectal cancer patients with lung and liver oligometastases treated with stereotactic body radiation therapy[J]. J Cancer Res Clin Oncol, 2020, 146(5): 1227-1234.
[9]
Kawamura H, Yamaguchi T, Yano Y, et al. Characteristics and prognostic factors of bone metastasis in patients with colorectal cancer[J]. Dis Colon Rectum, 2018, 61(6): 673-678.
[10]
Michl M, Thurmaier J, Schubert-Fritschle G, et al. Brain metastasis in colorectal cancer patients: survival and analysis of prognostic factors [J]. Clin Colorectal Cancer, 2015, 14(4): 281-290.
[11]
Ge H, Yan Y, Xie M, et al. Construction of a nomogram to predict overall survival for patients with M1 stage of colorectal cancer: A retrospective cohort study[J]. Int J Surg, 2019, 72: 96-101.
[12]
Li J, Yi CH, Hu YT, et al. TNM staging of colorectal cancer should be reconsidered according to weighting of the T stage: verification based on a 25-year follow-up [J]. Medicine (Baltimore), 2016, 95(6): e2711.
[13]
Wingo PA, Jamison PM, Hiatt RA, et al. Building the infrastructure for nationwide cancer surveillance and control--a comparison between the National Program of Cancer Registries (NPCR) and the Surveillance, Epidemiology, and End Results (SEER) Program (United States)[J]. Cancer Causes Control, 2003, 14(2): 175-193.
[14]
Benson AB, Venook AP, Al-Hawary MM, et al. NCCN guidelines insights: colon cancer, version 2.2018[J]. J Natl Compr Canc Netw, 2018, 16(4): 359-369.
[15]
Benson AB, Venook AP, Al-Hawary MM, et al. Rectal cancer, version 2.2018, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2018, 16(7): 874-901.
[16]
Ciombor KK, Bekaii-Saab T. A comprehensive review of sequencing and combination strategies of targeted agents in metastatic colorectal cancer[J]. Oncologist, 2018, 23(1): 25-34.
[17]
Sun Z, Sun Y, Tan L, et al. Clinical features and prognostic factors of brain metastasis from colorectal cancer[J]. Chinese Journal of Oncology, 2016, 38(1): 63-68.
[18]
Imaizumi J, Shida D, Narita Y, et al. Prognostic factors of brain metastases from colorectal cancer[J]. BMC Cancer, 2019, 19(1): 755.
[19]
Ruo L, Gougoutas C, Paty PB, et al. Elective bowel resection for incurable stageⅣ colorectal cancer: prognostic variables for asymptomatic patients[J]. J Am Coll Surg, 2003, 196(5): 722-728.
[20]
Verhoef C, de Wilt JH, Burger JW, et al. Surgery of the primary in stage Ⅳ colorectal cancer with unresectable metastases[J]. Eur J Cancer, 2011, 47 Suppl 3: S61-66.
[21]
Tarantino I, Warschkow R, Worni M, et al. Prognostic relevance of palliative primary tumor removal in 37,793 metastatic colorectal cancer patients: a population-based, propensity score-adjusted trend analysis[J]. Ann Surg, 2015, 262(1): 112-120.
[22]
Engstrom PF, Arnoletti JP, Benson AB, et al. NCCN clinical practice guidelines in oncology: rectal cancer[J]. J Natl Compr Canc Netw, 2009, 7(8): 838-881.
[23]
Ishihara S, Hayama T, Yamada H, et al. Prognostic impact of primary tumor resection and lymph node dissection in stage Ⅳ colorectal cancer with unresectable metastasis: a propensity score analysis in a multicenter retrospective study[J]. Ann Surg Oncol, 2014, 21(9): 2949-2955.
[24]
Tong D, Liu F, Li W, et al. The impacts of surgery of the primary cancer and radiotherapy on the survival of patients with metastatic rectal cancer[J]. Oncotarget, 2017, 8(51): 89214-89227.
[25]
Vatandoust S, Price TJ, Karapetis CS. Colorectal cancer: Metastases to a single organ[J]. World J Gastroenterol, 2015, 21(41): 11767-11776.
[26]
Achrol AS, Rennert RC, Anders C, et al. Brain metastases[J]. Nat Rev Dis Primers, 2019, 5(1): 5.
[27]
Zhang ZY, Luo QF, Yin XW, et al. Nomograms to predict survival after colorectal cancer resection without preoperative therapy[J]. BMC Cancer, 2016, 16(1): 658.
[1] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[2] 罗青杉, 梅海涛, 郝家领, 蔡锦锋, 周润楷, 温玉刚. 连接蛋白43通过调控细胞周期抑制结直肠癌的增殖机制研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 344-349.
[3] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[4] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[5] 张瑜, 姜梦妮. 基于DWI信号值构建局部进展期胰腺癌放化疗生存获益预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 657-664.
[6] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[7] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[8] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[9] 赵磊, 刘文志, 林峰, 于剑, 孙铭骏, 崔佑刚, 张旭, 衣宇鹏, 于宝胜, 冯宁. 深部热疗在改善结直肠癌术后辅助化疗副反应及生活质量中的作用研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 488-493.
[10] 黄海洋, 邝永龙, 陈嘉胜. 基层医院结直肠肿瘤经自然腔道取标本手术30 例分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 510-518.
[11] 张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.
[12] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
[13] 单良, 刘怡, 于涛, 徐丽. 老年股骨颈骨折术后患者心理弹性现状及影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 294-300.
[14] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要