切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2021, Vol. 10 ›› Issue (06) : 585 -590. doi: 10.3877/cma.j.issn.2095-3224.2021.06.004

论著

基于免疫基因的RNA-seq数据构建结直肠癌预后生存预测模型
李伟华1,(), 赵鹏宇2, 黎鸿坚1, 刘林江1, 李运洁3, 张芳3, 邹海军4, 王玉里1   
  1. 1. 518037 深圳大学第一附属医院,深圳市第二人民医院医学影像科
    2. 150081 哈尔滨医科大学生物信息科学与技术学院
    3. 518037 深圳大学第一附属医院,深圳市第二人民医院核医学科
    4. 518037 深圳大学第一附属医院,深圳市第二人民医院药学部
  • 收稿日期:2021-11-20 出版日期:2021-12-25
  • 通信作者: 李伟华
  • 基金资助:
    深圳市科技创新委员会(JCYJ20200109120205924)

Construction of colorectal cancer prognostic survival prediction model based on RNA-seq data of immune genes

Weihua Li1,(), Pengyu Zhao2, Hongjian Li1, Linjiang Liu1, Yunjie Li3, Fang Zhang3, Haijun Zou4, Yuli Wang1   

  1. 1. Medical Imaging Department, the First Affiliated Hospital of Shenzhen University, the Second People's Hospital of Shenzhen, Shenzhen 518037, China
    2. College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
    3. Nuclear Medicine Department, the First Affiliated Hospital of Shenzhen University, the Second People's Hospital of Shenzhen, Shenzhen 518037, China
    4. Pharmacy Department, the First Affiliated Hospital of Shenzhen University, the Second People's Hospital of Shenzhen, Shenzhen 518037, China
  • Received:2021-11-20 Published:2021-12-25
  • Corresponding author: Weihua Li
引用本文:

李伟华, 赵鹏宇, 黎鸿坚, 刘林江, 李运洁, 张芳, 邹海军, 王玉里. 基于免疫基因的RNA-seq数据构建结直肠癌预后生存预测模型[J/OL]. 中华结直肠疾病电子杂志, 2021, 10(06): 585-590.

Weihua Li, Pengyu Zhao, Hongjian Li, Linjiang Liu, Yunjie Li, Fang Zhang, Haijun Zou, Yuli Wang. Construction of colorectal cancer prognostic survival prediction model based on RNA-seq data of immune genes[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2021, 10(06): 585-590.

目的

筛选结直肠癌预后相关免疫基因并构建预后预测模型。

方法

从ImmPort数据库中收集免疫相关基因。来自The Cancer Genome Atlas(TCGA)数据库的Colon adenocarcinoma(COAD)数据集用于识别预后基因特征并构建预后生存预测模型,该特征在来自Gene Expression Omnibus(GEO)数据集中得到验证。进行基因功能富集分析。

结果

差异表达分析共得到362个在结直肠癌患者中差异表达的免疫相关基因;单因素COX回归筛选得到32个预后相关免疫基因,功能富集结果显示其与T细胞介导的免疫,T细胞介导的细胞毒性的上调等正相关;多因素COX回归最终确定SCTR、XCL1、NGF、CD1B、EREG为结直肠癌关键预后风险免疫基因,通过5个基因构建的预后生存预测模型对结直肠癌患者的预后情况具有良好的预测率。

结论

免疫相关的五基因特征是 COAD 患者的可靠预后指标,可为个性化癌症管理提供见解。

Objective

To screen the immune genes related to the prognosis of colorectal cancer and construct a prognostic prediction model.

Methods

Collect immune-related genes from the ImmPort database. The Colon adenocarcinoma (COAD) dataset from The Cancer Genome Atlas (TCGA) database is used to identify prognostic gene features and construct a prognostic survival prediction model, which is validated in the Gene Expression Omnibus (GEO) dataset. Perform gene function enrichment analysis.

Results

A total of 362 immune-related genes that were differentially expressed in patients with colorectal cancer were obtained by differential expression analysis; Thirty-two prognostic-related immune genes were obtained from single-factor COX regression screening. The result of functional enrichment showed that they were related to T cell-mediated immunity. The up-regulation of cell-mediated cytotoxicity was positively correlated; multi-factor COX regression finally determines that SCTR, XCL1, NGF, CD1B, and EREG were the key prognostic risk immune genes for colorectal cancer. The prognostic survival prediction model constructed by 5 genes was used for colorectal cancer. The prognosis of cancer patients has a good predictive rate.

Conclusion

Five-gene characteristics related to immunity are reliable prognostic indicators for patients with COAD and can provide insights for personalized cancer management.

图1 TCGA中结肠癌免疫差异基因的鉴定。1A:结肠癌与正常样本之间差异表达mRNA的火山图;1B:识别COAD免疫差异基因的韦恩图
表1 TCGA总体生存率的单因素cox回归分析
基因 P HR 95%置信区间
下限 上限
TPM2 0.037 333 456 1.164 735 504 1.008 985 34 1.344 527 756
BMP5 0.015 470 686 0.902 244 216 0.830 153 608 0.980 595 18
MAPT 0.048 972 932 1.112 097 744 1.000 478 422 1.236 169 981
SCTR 0.022 720 018 1.153 509 722 1.020 144 019 1.304 310 621
PTH1R 0.001 069 271 1.257 110 43 1.096 076 917 1.441 802 676
NGFR 0.029 119 625 1.118 533 922 1.011 457 652 1.236 945 642
NRG1 0.009 517 37 0.862 798 72 0.771 726 622 0.964 618 311
XCL1 0.017 352 622 1.149 979 461 1.024 927 328 1.290289295
NGF 0.001 577 987 1.271 908 962 1.095 637 576 1.476 539 726
CD1A 0.008 754 914 0.852 017 921 0.755 872 108 0.960 393 339
CD1B 0.001 893 971 0.812 280 797 0.712 418 815 0.926 140 747
PLXNA3 0.011 929 677 1.310 237 479 1.061 376 704 1.617 448 588
IL13RA2 0.017 131 454 0.852 268 15 0.747 304 731 0.971 974 308
OXT 0.026 428 062 1.205 833 49 1.022 155 647 1.422 517 607
PGF 0.038 496 809 1.187 486 309 1.009 138 71 1.397 353 723
TNFRSF19 0.033 426 571 1.107 359 16 1.008 037 142 1.216 467 388
MC1R 0.000 401 155 1.354 699 001 1.145 071 141 1.602 703 375
LTB4R 0.006 024 796 1.257 246 435 1.067 750 88 1.480 372 088
HAMP 0.005 822 998 1.190 324 479 1.051 685 608 1.347 239 473
JAG2 0.038 627 245 1.205 457 908 1.009 821 429 1.438 995 772
LHB 0.003 690 326 1.287 330 466 1.085 538 156 1.526 634 25
NMB 0.037 105 084 1.294 390 61 1.015 548 265 1.649 795 591
VGF 0.019 353 758 1.134 601 004 1.020 658 378 1.261 263 775
GRP 0.028 857 835 1.117 979 089 1.011 571 675 1.235 579 519
INHBB 0.004 117 149 1.160 256 891 1.048 224 983 1.284 262 515
UCN 0.000 868 846 1.356 013 4 1.133 478 922 1.622 237 789
SLC11A1 0.032 705 805 1.146 338 409 1.011 299 872 1.299 408 596
OXTR 0.020 224 425 1.180 831 322 1.026 264 632 1.358 677 449
CXCL1 0.049 032 161 0.878 401 415 0.772 013 438 0.999 4502 78
TDGF1 0.037 335 37 0.917 432 088 0.845 946 482 0.994 958 491
EREG 0.035 366 082 0.924 650 707 0.859 580 693 0.994 646 503
STC2 0.032 651 23 1.130 638 218 1.010 188 758 1.265 449 421
图2 预后风险mRNA富集分析
图3 TCGA-COAD中5个基因特征模型的预后分析。3A:TCGA患者高低风险组OS的K-M曲线;3B:OS的时间相关ROC曲线
图4 TCGA-COAD中预后风险免疫mRNA的表达对比。P<0.05表示为*;P<0.01代表为**;P<0.001表示为***;P<0.0001表示为****
图5 GSE39582-COAD的验证。5A:GSE3952患者高低风险组OS的K-M曲线;5B:OS的时间相关ROC曲线
[1]
Benson AB, Venook AP, Al-Hawary MM, et al. NCCN guidelines insights: colon cancer, Version 2.2018[J]. Journal of the National Comprehensive Cancer Network: JNCCN, 2018, 16(4): 359-369.
[2]
Chen WQ, Li H, Sun KX, et al. Report of Cancer Incidence and Mortality in China, 2014[J]. Chinese Journal of Oncology, 2018, 40(1): 5-13.
[3]
Dienstmann R, Salazar R, Tabernero J. Personalizing colon cancer adjuvant therapy: selecting optimal treatments for individual patients[J]. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 2015, 33(16): 1787-1796.
[4]
Frampton M, Houlston RS. Modeling the prevention of colorectal cancer from the combined impact of host and behavioral risk factors[J]. Genetics in medicine: official journal of the American College of Medical Genetics, 2017, 19(3): 314-321.
[5]
Croci DO, Zacarías Fluck MF, Rico MJ, et al. Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment[J]. Cancer immunology, immunotherapy: CII. 2007, 56(11): 1687-1700.
[6]
Broussard EK, Kim R, Wiley JC, et al. Identification of putative immunologic targets for colon cancer prevention based on conserved gene upregulation from preinvasive to malignant lesions[J]. Cancer prevention research (Philadelphia, Pa.), 2013, 6(7): 666-674.
[7]
O'Connell J, Bennett MW, Nally K, et al. Altered mechanisms of apoptosis in colon cancer: fas resistance and counterattack in the tumor-immune conflict[J]. Annals of the New York Academy of Sciences, 2000, 910:178-192; discussion 193-175.
[8]
Tauriello DVF, Palomo-Ponce S, Stork D, et al. Tgfβ drives immune evasion in genetically reconstituted colon cancer metastasis[J]. Nature, 2018, 554(7693): 538-543.
[9]
Abbas AR, Baldwin D, Ma Y, et al. Immune response in silico (iris): immune-specific genes identified from a compendium of microarray expression data[J]. Genes and immunity, 2005, 6(4): 319-331.
[10]
Weinstein JN, Collisson EA, Mills GB, et al. The cancer genome atlas pan-cancer analysis project[J]. Nature genetics, 2013, 45(10): 1113-1120.
[11]
Bhattacharya S, Dunn P, Thomas CG, et al. Immport, toward repurposing of open access immunological assay data for translational and clinical research[J]. Scientific data, 2018, 5: 180015.
[12]
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for Rna-Seq data with Deseq2[J]. Genome biology, 2014, 15(12): 550.
[13]
Yu G, Wang LG, Han Y, et al. Clusterprofiler: an r package for comparing biological themes among gene clusters[J]. Omics: a journal of integrative biology, 2012, 16(5): 284-287.
[14]
Gene Ontology Consortium. Gene Ontology Consortium: going forward[J]. Nucleic Acids Res, 2015, 43 (Database issue): D1049-1056.
[15]
Goel MK, Khanna P, Kishore J. Understanding Survival Analysis: Kaplan-Meier Estimate[J]. International journal of Ayurveda research. 2010; 1(4): 274-278.
[16]
Jiang X, Cooper GF, Neill DB. Generalized Amoc Curves for Evaluation and Improvement of Event Surveillance. AMIA Annual Symposium proceedings[J]. AMIA Symposium, 2009, 2009: 281-285.
[17]
Pagès F, Mlecnik B, Marliot F, et al. International validation of the consensus immunoscore for the classification of colon cancer: a prognostic and accuracy study[J].Lancet (London, England), 2018, 391(10135): 2128-2139.
[18]
Lee CH, Chen LC, Yu CC, et al. Prognostic value of Cd1b in localised prostate cancer[J]. Int J Environ Res Public Health, 2019, 16(23): 4723.
[19]
Liu S, Wang Y, Han Y, et al. Ereg-driven oncogenesis of head and neck squamous cell carcinoma exhibits higher sensitivity to erlotinib therapy[J]. Theranostics, 2020, 10(23): 10589-10605.
[20]
Lei Y, Takahama Y. Xcl1 and Xcr1 in the immune system[J]. Microbes and infection, 2012, 14(3): 262-267.
[1] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[2] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[3] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[4] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[5] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[6] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[7] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[8] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[9] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[10] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[11] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[12] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
[13] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[14] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[15] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?