切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2021, Vol. 10 ›› Issue (03) : 306 -312. doi: 10.3877/cma.j.issn.2095-3224.2021.03.015

综述

MicroRNAs调控结直肠癌干细胞的研究进展
欧苏文1, 罗康佳1, 管子龙1, 黄睿1,()   
  1. 1. 150081 哈尔滨医科大学附属第二医院结直肠肿瘤外科
  • 收稿日期:2020-10-01 出版日期:2021-06-25
  • 通信作者: 黄睿
  • 基金资助:
    国家自然科学基金面上项目(81872034); 黑龙江省自然科学基金面上项目(H2017016); 吴阶平医学基金会(320.6750.19092-41); 湖北陈孝平科技发展基金会(CXPJJH12000002-2020025)

Research progress of microRNAs regulating colorectal cancer stem cells

Suwen Ou1, Kangjia Luo1, Zilong Guan1, Rui Huang1()   

  1. 1. Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
  • Received:2020-10-01 Published:2021-06-25
  • Corresponding author: Rui Huang
引用本文:

欧苏文, 罗康佳, 管子龙, 黄睿. MicroRNAs调控结直肠癌干细胞的研究进展[J]. 中华结直肠疾病电子杂志, 2021, 10(03): 306-312.

Suwen Ou, Kangjia Luo, Zilong Guan, Rui Huang. Research progress of microRNAs regulating colorectal cancer stem cells[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2021, 10(03): 306-312.

结直肠癌干细胞(CCSCs)是结直肠癌组织中具有自我更新和增殖分化潜能的一个亚群,它能够启始和驱动结直肠癌的发生、进展,并且与结直肠癌的复发、转移、放化疗抵抗等生物学行为密切相关。MicroRNAs是一类参与转录后调控的小分子非编码RNA。已有大量的研究表明MicroRNAs在CCSCs自我更新、增殖、分化、耐药等多种生物学过程中发挥着重要的调控作用。本文概述了MicroRNAs调控CCSCs特性的各种机制,尤其是作用于多种信号通路,以及MicroRNAs在结直肠癌诊治中的应用前景。深入研究MicroRNAs在CCSCs中的分子机制,有助于更好理解结直肠癌干细胞的生物学特征,并为靶向肿瘤干细胞的结直肠癌临床治疗提供新的参考。

Colorectal cancer stem cells(CCSCs) are a subpopulation of colorectal cancer cells with the potential of self-renewal, proliferation and differentiation, which can initiate and promote the occurrence and progress of colorectal cancer. And it is closely related to the recurrence, metastasis, radiotherapy and chemotherapy resistance of colorectal cancer. MicroRNAs are a kind of small noncoding RNAs, involved in post-transcriptional regulation. A large number of studies have shown that MicroRNAs play an important role in the self-renewal, proliferation, differentiation, drug resistance and other biological processes of colorectal cancer stem cells. Herein we summarized various mechanisms of MicroRNAs regulating the characteristics of colorectal cancer stem cells, especially in a variety of signal pathways. In addition, we introduced the application prospect of MicroRNAs in the diagnosis and treatment of colorectal cancer. Advanced study of the molecular mechanism of MicroRNAs in colorectal cancer stem cells will help us to understand the biological characteristics and behavior of colorectal cancer stem cells better, and will also provide a new reference for clinical treatment of targeted colorectal cancer stem cells.

图1 miRNAs调控信号通路
图2 miRNAs调控干性
表1 miRNAs调控干性
1
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
2
Batlle E, Clevers H. Cancer stem cells revisited[J]. Nat Med, 2017, 23(10): 1124-1134.
3
Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells[J]. Science, 1977, 197(4302): 461-463.
4
Mackillop WJ, Ciampi A, Till JE, et al. A stem cell model of human tumor growth: implications for tumor cell clonogenic assays[J]. J Natl Cancer Inst, 1983, 70(1): 9-16.
5
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med, 1997, 3(7): 730-737.
6
O'Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature, 2007, 445(7123): 106-110.
7
Wahab SMR, Islam F, Gopalan V, et al. The identifications and clinical implications of cancer stem cells in colorectal cancer[J]. Clin Colorectal Cancer, 2017, 16(2): 93-102.
8
Zeuner A, Todaro M, Stassi G, et al. Colorectal cancer stem cells: from the crypt to the clinic[J]. Cell Stem Cell, 2014, 15(6): 692-705.
9
Huang EH, Hynes MJ, Zhang T, et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis[J]. Cancer Res, 2009, 69(8): 3382-3389.
10
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem, 2010, 79: 351-379.
11
Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer[J]. Biochim Biophys Acta, 2003, 1653(1): 1-24.
12
Yu Y, Kanwar SS, Patel BB, et al. MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells[J]. Carcinogenesis, 2012, 33(1): 68-76.
13
Hu JL, Wang W, Lan XL, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer[J]. Mol Cancer, 2019, 18(1): 91.
14
Chen HY, Lang YD, Lin HN, et al. miR-103/107 prolong Wnt/β-catenin signaling and colorectal cancer stemness by targeting Axin2[J]. Sci Rep, 2019, 9(1): 9687.
15
Hwang WL, Jiang JK, Yang SH, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells[J]. Nat Cell Biol, 2014, 16(3): 268-280.
16
Cai MH, Xu XG, Yan SL, et al. Regorafenib suppresses colon tumorigenesis and the generation of drug resistant cancer stem-like cells via modulation of miR-34a associated signaling[J]. J Exp Clin Cancer Res, 2018, 37(1): 151.
17
Li Y, Shao Y, Tong Y, et al. Nucleo-cytoplasmic shuttling of PAK4 modulates β-catenin intracellular translocation and signaling[J]. Biochim Biophys Acta, 2012, 1823(2): 465-475.
18
Yamada N, Noguchi S, Mori T, et al. Tumor-suppressive microRNA-145 targets catenin δ-1 to regulate Wnt/β-catenin signaling in human colon cancer cells[J]. Cancer Lett, 2013, 335(2): 332-342.
19
Ning Z, Wang A, Liang J, et al. USP22 promotes the G1/S phase transition by upregulating FoxM1 expression via β-catenin nuclear localization and is associated with poor prognosis in stage II pancreatic ductal adenocarcinoma[J]. Int J Oncol, 2014, 45(4): 1594-1608.
20
Jiang S, Miao D, Wang M, et al. MiR-30-5p suppresses cell chemoresistance and stemness in colorectal cancer through USP22/Wnt/β-catenin signaling axis[J]. J Cell Mol Med, 2019, 23(1): 630-640.
21
Mamoori A, Wahab R, Vider J, et al. The tumour suppressor effects and regulation of cancer stem cells by macrophage migration inhibitory factor targeted miR-451 in colon cancer[J]. Gene, 2019, 697: 165-174.
22
Castellone MD, Teramoto H, Williams BO, et al. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis[J]. Science, 2005, 310(5753): 1504-1510.
23
Bitarte N, Bandres E, Boni V, et al. MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells[J]. Stem Cells, 2011, 29(11): 1661-1671.
24
Ren J, Ding L, Zhang D, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19[J]. Theranostics, 2018, 8(14): 3932-3948.
25
van Es JH, van Gijn ME, Riccio O, et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells[J]. Nature, 2005, 435(7044): 959-963.
26
Taketo MM. Reflections on the spread of metastasis to cancer prevention[J]. Cancer Prev Res (Phila), 2011, 4(3): 324-328.
27
Bu P, Chen KY, Chen JH, et al. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells[J]. Cell Stem Cell, 2013, 12(5): 602-615.
28
Jin Y, Wang M, Hu H, et al. Overcoming stemness and chemoresistance in colorectal cancer through miR-195-5p-modulated inhibition of notch signaling[J]. Int J Biol Macromol, 2018, 117: 445-453.
29
Marotta LL, Almendro V, Marusyk A, et al. The JAK2/STAT3 signaling pathway is required for growth of CD44⁺CD24⁻ stem cell-like breast cancer cells in human tumors[J]. J Clin Invest, 2011, 121(7): 2723-2735.
30
Zhao C, Li H, Lin HJ, et al. Feedback activation of STAT3 as a cancer drug-resistance mechanism[J]. Trends Pharmacol Sci, 2016, 37(1): 47-61.
31
Hebenstreit D, Horejs-Hoeck J, Duschl A. JAK/STAT-dependent gene regulation by cytokines[J]. Drug News Perspect, 2005, 18(4): 243-249.
32
Ren D, Lin B, Zhang X, et al. Maintenance of cancer stemness by miR-196b-5p contributes to chemoresistance of colorectal cancer cells via activating STAT3 signaling pathway[J]. Oncotarget, 2017, 8(30): 49807-49823.
33
Park JK, Jung HY, Park SH, et al. Combination of PTEN and gamma-ionizing radiation enhances cell death and G(2)/M arrest through regulation of AKT activity and p21 induction in non-small-cell lung cancer cells[J]. Int J Radiat Oncol Biol Phys, 2008, 70(5): 1552-1560.
34
Frattini M, Saletti P, Romagnani E, et al. PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients[J]. Br J Cancer, 2007, 97(8): 1139-1145.
35
Zheng L, Zhang Y, Liu Y, et al. MiR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer[J]. J Transl Med, 2015, 13: 252.
36
Roy S, Yu Y, Padhye SB, et al. Difluorinated-curcumin (CDF) restores PTEN expression in colon cancer cells by down-regulating miR-21[J]. PLoS One, 2013, 8(7): e68543.
37
Yusra, Semba S, Yokozaki H. Biological significance of tumor budding at the invasive front of human colorectal carcinoma cells[J]. Int J Oncol, 2012, 41(1): 201-210.
38
Zubeldia IG, Bleau AM, Redrado M, et al. Epithelial to mesenchymal transition and cancer stem cell phenotypes leading to liver metastasis are abrogated by the novel TGFβ1-targeting peptides P17 and P144[J]. Exp Cell Res, 2013, 319(3): 12-22.
39
Ye J, Lei J, Fang Q, et al. miR-4666-3p and miR-329 synergistically suppress the stemness of colorectal cancer cells via targeting TGF-β/Smad pathway[J]. Front Oncol, 2019, 9: 1251.
40
Zhang J, Tam WL, Tong GQ, et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1[J]. Nat Cell Biol, 2006, 8(10): 1114-1123.
41
Chang S, Sun G, Zhang D, et al. MiR-3622a-3p acts as a tumor suppressor in colorectal cancer by reducing stemness features and EMT through targeting spalt-like transcription factor 4[J]. Cell Death Dis, 2020, 11(7): 592.
42
Whissell G, Montagni E, Martinelli P, et al. The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression[J]. Nat Cell Biol, 2014, 16(7): 695-707.
43
Lai HT, Tseng WK, Huang SW, et al. MicroRNA-203 diminishes the stemness of human colon cancer cells by suppressing GATA6 expression[J]. J Cell Physiol, 2020, 235(3): 2866-2880.
44
McConnell BB, Bialkowska AB, Nandan MO, et al. Haploinsufficiency of Krüppel-like factor 5 rescues the tumor-initiating effect of the Apc(Min) mutation in the intestine[J]. Cancer Res, 2009, 69(10): 4125-4133.
45
Morimoto Y, Mizushima T, Wu X, et al. miR-4711-5p regulates cancer stemness and cell cycle progression via KLF5, MDM2 and TFDP1 in colon cancer cells[J]. Br J Cancer, 2020, 122(7): 1037-1049.
46
Tang D, Yang Z, Long F, et al. Long noncoding RNA MALAT1 mediates stem cell-like properties in human colorectal cancer cells by regulating miR-20b-5p/Oct4 axis[J]. J Cell Physiol, 2019, 234(11): 20816-20828.
47
Siddique HR, Saleem M. Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences[J]. Stem Cells, 2012, 30(3): 372-378.
48
Jones MF, Hara T, Francis P, et al. The CDX1-microRNA-215 axis regulates colorectal cancer stem cell differentiation[J]. Proc Natl Acad Sci USA, 2015, 112(13): E1550-1558.
49
Chen J, Wang Y, Zhuo L, et al. Fas signaling induces stemness properties in colorectal cancer by regulation of Bmi1[J]. Mol Carcinog, 2017, 56(10): 2267-2278.
50
Liu K, Lin B, Zhao M, et al. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis[J]. Cell Signal, 2013, 25(5): 1264-1271.
51
Lu YX, Yuan L, Xue XL, et al. Regulation of colorectal carcinoma stemness, growth, and metastasis by an miR-200c-Sox2-negative feedback loop mechanism[J]. Clin Cancer Res, 2014, 20(10): 2631-2642.
52
Jin Y, Jiang Z, Guan X, et al. miR-450b-5p suppresses stemness and the development of chemoresistance by targeting SOX2 in colorectal cancer[J]. DNA Cell Biol, 2016, 35(5): 249-256.
53
Li Y, Lv Z, He G, et al. The SOX17/miR-371-5p/SOX2 axis inhibits EMT, stem cell properties and metastasis in colorectal cancer[J]. Oncotarget, 2015, 6(11): 9099-9112.
54
Becker KA, Ghule PN, Lian JB, et al. Cyclin D2 and the CDK substrate p220(NPAT) are required for self-renewal of human embryonic stem cells[J]. J Cell Physiol, 2010, 222(2): 456-464.
55
Ye J, Wang Z, Zhao J, et al. MicroRNA-141 inhibits tumor growth and minimizes therapy resistance in colorectal cancer[J]. Mol Med Rep, 2017, 15(3): 1037-1042.
56
Kang T, Yi J, Yang W, et al. Functional characterization of MT3-MMP in transfected MDCK cells: progelatinase A activation and tubulogenesis in 3-D collagen lattice[J]. Faseb j, 2000, 14(15): 2559-2568.
57
Xu XT, Xu Q, Tong JL, et al. MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer[J]. Br J Cancer, 2012, 106(7): 1320-1330.
58
Raha D, Wilson TR, Peng J, et al. The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation[J]. Cancer Res, 2014, 74(13): 3579-3590.
59
Chen J, Chen Y, Chen Z. MiR-125a/b regulates the activation of cancer stem cells in paclitaxel-resistant colon cancer[J]. Cancer Invest, 2013, 31(1): 17-23.
60
Qin Y, Chen X, Liu Z, et al. miR-106a reduces 5-fluorouracil (5-FU) sensitivity of colorectal cancer by targeting dual-specificity phosphatases 2 (DUSP2)[J]. Med Sci Monit, 2018, 24: 4944-4951.
61
Zhang R, Xu J, Zhao J, et al. Knockdown of miR-27a sensitizes colorectal cancer stem cells to TRAIL by promoting the formation of Apaf-1-caspase-9 complex[J]. Oncotarget, 2017, 8(28): 45213-45223.
62
Mukohyama J, Isobe T, Hu Q, et al. MiR-221 targets QKI to enhance the tumorigenic capacity of human colorectal cancer stem cells[J]. Cancer Res, 2019, 79(20): 5151-5158.
63
Xi XP, Zhuang J, Teng MJ, et al. MicroRNA-17 induces epithelial-mesenchymal transition consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer[J]. Int J Mol Med, 2016, 38(2): 499-506.
64
Lv L, Li Q, Chen S, et al. miR-133b suppresses colorectal cancer cell stemness and chemoresistance by targeting methyltransferase DOT1L[J]. Exp Cell Res, 2019, 385(1): 111597.
65
Zhao H, Su W, Kang Q, et al. Natural killer cells inhibit oxaliplatin-resistant colorectal cancer by repressing WBSCR22 via upregulating microRNA-146b-5p[J]. Am J Cancer Res, 2018, 8(5): 824-834.
66
Zhao H, Su W, Sun Y, et al. WBSCR22 competes with long non-coding RNA Linc00346 for miR-509-5p binding site to regulate cancer stem cell phenotypes of colorectal cancer[J]. Biochem Genet, 2020, 58(3): 384-398.
67
Zhang Y, Zheng L, Huang J, et al. MiR-124 Radiosensitizes human colorectal cancer cells by targeting PRRX1[J]. PLoS One, 2014, 9(4): e93917.
68
Wang Y, Wei C, Yang Y, et al. Hepatocyte nuclear factor-1β suppresses the stemness and migration of colorectal cancer cells through promoting miR-200b activity[J]. Mol Carcinog, 2020, 59(8): 989-999.
69
Yan TT, Ren LL, Shen CQ, et al. MiR-508 defines the stem-like/mesenchymal subtype in colorectal cancer[J]. Cancer Res, 2018, 78(7): 1751-1765.
70
Siemens H, Jackstadt R, Kaller M, et al. Repression of c-Kit by p53 is mediated by miR-34 and is associated with reduced chemoresistance, migration and stemness[J]. Oncotarget, 2013, 4(9): 1399-1415.
71
Ferracin M, Lupini L, Mangolini A, et al. Circulating non-coding RNA as biomarkers in colorectal cancer[J]. Adv Exp Med Biol, 2016, 937: 171-181.
72
Yamazaki N, Koga Y, Taniguchi H, et al. High expression of miR-181c as a predictive marker of recurrence in stage II colorectal cancer[J]. Oncotarget, 2017, 8(4): 6970-6983.
73
Sarvizadeh M, Malekshahi ZV, Razi E, et al. MicroRNA: A new player in response to therapy for colorectal cancer[J]. J Cell Physiol, 2019, 234(6): 8533-8540.
74
Karsten U, Goletz S. What makes cancer stem cell markers different?[J]. Springerplus, 2013, 2(1): 301.
75
Zhao Y, Xu J, Le VM, et al. EpCAM aptamer-functionalized cationic liposome-based nanoparticles loaded with miR-139-5p for targeted therapy in colorectal cancer[J]. Mol Pharm, 2019, 16(11): 4696-4710.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[5] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[6] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[7] 常剑, 邱峰, 毛郁琪. 摄食抑制因子-1与腹腔镜结直肠癌根治术后肝转移的关系分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 502-505.
[8] 王晓燕, 肖佑, 肖戈, 王真权. 老年结直肠癌肺转移CT特征及高危因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 506-509.
[9] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[10] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[11] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[12] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[13] 黄怡诚, 陆晨, 孙司正, 喻春钊. 肝特异性转录因子FOXA2在人结直肠癌肝转移阶梯模型中的表达变化及其意义[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 396-403.
[14] 刘祺, 张凯, 李建男, 刘铜军. 结直肠癌肝转移生物治疗的现状及进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 415-419.
[15] 吴寅, 陈智琴, 高勇, 权明. Her-2阳性结直肠癌的诊治进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 420-425.
阅读次数
全文


摘要