31 |
Trebeschi S, Van Griethuysen JJM, Lambregts DMJ, et al. Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR [J]. Scientific Reports, 2017, 7(1): 5301.
|
32 |
Lu Y, Yu Q, Gao Y, et al. Identification of metastatic lymph nodes in MR imaging with faster region-based convolutional neural networks [J]. Cancer Res, 2018, 78(17): 5135-5143.
|
33 |
Prewitt JM, Mendelsohn ML. The analysis of cell images [J]. Ann N Y Acad Sci, 1966, 128(3): 1035-1053.
|
34 |
Kainz P, Pfeiffer M, Urschler M. Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization [J]. PeerJ, 2017, 5: e3874.
|
35 |
Awan R, Sirinukunwattana K, Epstein D, et al. Glandular morphometrics for objective grading of colorectal adenocarcinoma histology images [J]. Scientific reports, 2017, 7(1): 16852.
|
36 |
吴妍, 戎荣, 吴云松, 等. TIS电脑辅助阅片新技术在妇科宫颈疾病普查中的应用与临床意义 [J]. 中国妇幼保健, 2015, 30(10): 1601-1603.
|
37 |
Nakashima MO, Doyle TJ, Phelan-lewin K, et al. Assessment of semi-quantitative grading of red blood cell abnormalities utilizing images from the CellaVision DM96 compared to manual light microscopy [J]. Int J Lab Hematol, 2017, 39(5): e110-e112.
|
38 |
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology [J]. Nat Rev Cancer, 2018, 18(8): 500-510.
|
39 |
Min JK, Kwak MS, Cha JM. Overview of deep learning in gastrointestinal endoscopy [J]. Gut Liver, 2019, 13(4): 388-393.
|
40 |
Ching T, Himmelstein DS, Beaulieu-jones BK, et al. Opportunities and obstacles for deep learning in biology and medicine [J]. J R Soc Interface, 2018, 15(141): 20170387.
|
1 |
Brenner H, Kloor M, Pox CP. Colorectal cancer [J]. Lancet, 2014, 383(9927): 1490-1502.
|
2 |
Araghi M, Soerjomataram I, Jenkins M, et al. Global trends in colorectal cancer mortality: projections to the year 2035[J]. Int J Cancer, 2019, 144(12): 2992-3000.
|
3 |
Kuipers EJ, Grady WM, Lieberman D, et al. Colorectal cancer [J]. Nat Rev Dis Primers, 2015, 1: 15065.
|
4 |
Proskurina AS, Gvozdeva TS, Potter EA, et al. Five-year disease-free survival among stage II-IV breast cancer patients receiving FAC and AC chemotherapy in phase II clinical trials of Panagen [J]. BMC Cancer, 2016, 16: 651.
|
5 |
Nishihara R, Wu K, Lochhead P, et al. Long-term colorectal-cancer incidence and mortality after lower endoscopy [J]. N Engl J Med, 2013, 369(12): 1095-1105.
|
6 |
Frattini M, Balestra D, Verderio P, et al. Reproducibility of a semiquantitative measurement of circulating DNA in plasma from neoplastic patients [J]. J Clin Oncol, 2005, 23(13): 3163-3164.
|
7 |
Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells [J]. Cancer Res, 2001, 61(4): 1659-1665.
|
8 |
Litjens G, Sánchez CI, Timofeeva N, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis [J]. Scientific reports, 2016, 6: 26286.
|
9 |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs [J]. JAMA, 2016, 316(22): 2402-2410.
|
10 |
Brinker TJ, Hekler A, Enk AH, et al. Deep neural networks are superior to dermatologists in melanoma image classification [J]. Eur J Cancer, 2019, 119: 11-17.
|
11 |
Ehteshami Bejnordi B, Veta M, Johannes Van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer [J]. JAMA, 2017, 318(22): 2199-2210.
|
12 |
Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study [J]. The Lancet Oncology, 2018, 19(9): 1180-1191.
|
13 |
Yuan Z, Xu T, Cai J, et al. Development and validation of an image-based deep learning algorithm for detection of synchronous peritoneal carcinomatosis in colorectal cancer [J]. Ann Surg, 2020.
|
14 |
Hixson LJ, Fennerty MB, Sampliner RE, et al. Prospective study of the frequency and size distribution of polyps missed by colonoscopy [J]. J Natl Cancer Inst, 1990, 82(22): 1769-1772.
|
15 |
Rex DK. Maximizing detection of adenomas and cancers during colonoscopy [J]. Am J Gastroenterol, 2006, 101(12): 2866-2877.
|
16 |
Rex DK, Cutler CS, Lemmel GT, et al. Colonoscopic miss rates of adenomas determined by back-to-back colonoscopies [J]. Gastroenterology, 1997, 112(1): 24-28.
|
17 |
Vinsard DG, Mori Y, Misawa M, et al. Quality assurance of computer-aided detection and diagnosis in colonoscopy [J]. Gastrointest Endosc, 2019, 90(1): 55-63.
|
18 |
Kudo SE, Mori Y, Misawa M, et al. Artificial intelligence and colonoscopy: Current status and future perspectives [J]. Dig Endosc, 2019, 31(4): 363-371.
|
19 |
Hassan C, Pickhardt PJ, Rex DK. A resect and discard strategy would improve cost-effectiveness of colorectal cancer screening [J]. Clin Gastroenterol Hepatol, 2010, 8(10): 865-9, 869.e1-3.
|
20 |
Gross S, Trautwein C, Behrens A, et al. Computer-based classification of small colorectal polyps by using narrow-band imaging with optical magnification [J]. Gastrointest Endosc, 2011, 74(6): 1354-1359.
|
21 |
Kominami Y, Yoshida S, Tanaka S, et al. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy [J]. Gastrointest Endosc, 2016, 83(3): 643-649.
|
22 |
Wang P, Xiao X, Glissen Brown JR, et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy [J]. Nat Biomed Eng, 2018, 2(10): 741-748.
|
23 |
Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study [J]. Gut, 2019, 68(10): 1813-1819.
|
24 |
Lambin P, Rios-velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis [J]. Eur J Cancer, 2012, 48(4): 441-446.
|
25 |
Bibault JE, Giraud P, Housset M, et al. Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer [J]. Scientific Reports, 2018, 8(1): 12611.
|
26 |
李芊, 周欣元, 汪晓东, 等. 影像组学技术与结直肠癌临床应用研究进展 [J]. 中国普外基础与临床杂志, 2019, 26(10): 1253-1258.
|
27 |
Liang C, Huang Y, He L, et al. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer [J]. Oncotarget, 2016, 7(21): 31401-31412.
|
28 |
Wang F, Casalino LP, Khullar D. Deep learning in medicine-promise, progress, and challenges [J]. JAMA Intern Med, 2019, 179(3): 293-294.
|
29 |
Dong D, Tang L, Li ZY, et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer [J]. Ann Oncol, 2019, 30(3): 431-438.
|
30 |
卢云, 刘广伟. 人工智能在结直肠癌诊治中应用现状、难点及对策 [J]. 中国实用外科杂志, 2020, 40(3): 271-274.
|