切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2021, Vol. 10 ›› Issue (03) : 313 -317. doi: 10.3877/cma.j.issn.2095-3224.2021.03.016

综述

人工智能在结直肠癌方面的应用
吴志杰1, 袁紫旭1, 蔡建1, 王辉1,()   
  1. 1. 510000 广州,中山大学附属第六医院结直肠外科
  • 收稿日期:2020-09-06 出版日期:2021-06-25
  • 通信作者: 王辉
  • 基金资助:
    广东省自然科学基金(2018A030310320)

Application of artificial intelligence in the diagnosis of colorectal cancer (2020)

Zhijie Wu1, Zixu Yuan1, Jian Cai1, Hui Wang1()   

  1. 1. Department of Colorectal Surgery, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
  • Received:2020-09-06 Published:2021-06-25
  • Corresponding author: Hui Wang
引用本文:

吴志杰, 袁紫旭, 蔡建, 王辉. 人工智能在结直肠癌方面的应用[J/OL]. 中华结直肠疾病电子杂志, 2021, 10(03): 313-317.

Zhijie Wu, Zixu Yuan, Jian Cai, Hui Wang. Application of artificial intelligence in the diagnosis of colorectal cancer (2020)[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2021, 10(03): 313-317.

结直肠癌是消化道常见的恶行肿瘤,世界范围内结直肠癌的发病率和死亡率均保持上升趋势。早期的诊断和治疗是影响患者预后的关键因素。人工智能(AI)自问世以来,不断被研究,并在近些年来取得飞跃式的发展。在医学方面,人工智能在内镜、医学影像和病理等方面的应用可以为医生提供可靠的参考意见,减少医生之间的经验差异,帮助医生做出更为精准的诊断决策。虽然AI技术在结直肠癌诊断中的地位不断提升,但其在临床应用中还存在诸多问题,须进一步规范及完善。

Colorectal cancer is a common malignant tumor of the digestive tract. The incidence and mortality of colorectal cancer are on the rise world widely. Early diagnosis and treatment are the key factors to improve prognosis of patients. Artificial intelligence (AI) has been studied continuously since its appearance, and has made great progress in recent years. In medicine, the application of AI in endoscopy, medical imaging and pathology can provide reliable reference advice for doctors, reduce the differences due to experience between doctors, and help doctors make more accurate diagnosis decisions, especially in cancer. AI technology has been implemented in the diagnosis and prevention of colorectal cancer and are proven to be very helpful for gastrointestinests, there are still limitations in its clinical application, which need to be further improved.

图1 AI辅助系统诊断息肉的流程图(基于SegNet架构的检测算法,将结肠镜图像按顺序扭曲为二值图像,1表示息肉像素,0表示无息肉的概率,然后输出显示出来)
31
Trebeschi S, Van Griethuysen JJM, Lambregts DMJ, et al. Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR [J]. Scientific Reports, 2017, 7(1): 5301.
32
Lu Y, Yu Q, Gao Y, et al. Identification of metastatic lymph nodes in MR imaging with faster region-based convolutional neural networks [J]. Cancer Res, 2018, 78(17): 5135-5143.
33
Prewitt JM, Mendelsohn ML. The analysis of cell images [J]. Ann N Y Acad Sci, 1966, 128(3): 1035-1053.
34
Kainz P, Pfeiffer M, Urschler M. Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization [J]. PeerJ, 2017, 5: e3874.
35
Awan R, Sirinukunwattana K, Epstein D, et al. Glandular morphometrics for objective grading of colorectal adenocarcinoma histology images [J]. Scientific reports, 2017, 7(1): 16852.
36
吴妍, 戎荣, 吴云松, 等. TIS电脑辅助阅片新技术在妇科宫颈疾病普查中的应用与临床意义 [J]. 中国妇幼保健, 2015, 30(10): 1601-1603.
37
Nakashima MO, Doyle TJ, Phelan-lewin K, et al. Assessment of semi-quantitative grading of red blood cell abnormalities utilizing images from the CellaVision DM96 compared to manual light microscopy [J]. Int J Lab Hematol, 2017, 39(5): e110-e112.
38
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology [J]. Nat Rev Cancer, 2018, 18(8): 500-510.
39
Min JK, Kwak MS, Cha JM. Overview of deep learning in gastrointestinal endoscopy [J]. Gut Liver, 2019, 13(4): 388-393.
40
Ching T, Himmelstein DS, Beaulieu-jones BK, et al. Opportunities and obstacles for deep learning in biology and medicine [J]. J R Soc Interface, 2018, 15(141): 20170387.
1
Brenner H, Kloor M, Pox CP. Colorectal cancer [J]. Lancet, 2014, 383(9927): 1490-1502.
2
Araghi M, Soerjomataram I, Jenkins M, et al. Global trends in colorectal cancer mortality: projections to the year 2035[J]. Int J Cancer, 2019, 144(12): 2992-3000.
3
Kuipers EJ, Grady WM, Lieberman D, et al. Colorectal cancer [J]. Nat Rev Dis Primers, 2015, 1: 15065.
4
Proskurina AS, Gvozdeva TS, Potter EA, et al. Five-year disease-free survival among stage II-IV breast cancer patients receiving FAC and AC chemotherapy in phase II clinical trials of Panagen [J]. BMC Cancer, 2016, 16: 651.
5
Nishihara R, Wu K, Lochhead P, et al. Long-term colorectal-cancer incidence and mortality after lower endoscopy [J]. N Engl J Med, 2013, 369(12): 1095-1105.
6
Frattini M, Balestra D, Verderio P, et al. Reproducibility of a semiquantitative measurement of circulating DNA in plasma from neoplastic patients [J]. J Clin Oncol, 2005, 23(13): 3163-3164.
7
Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells [J]. Cancer Res, 2001, 61(4): 1659-1665.
8
Litjens G, Sánchez CI, Timofeeva N, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis [J]. Scientific reports, 2016, 6: 26286.
9
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs [J]. JAMA, 2016, 316(22): 2402-2410.
10
Brinker TJ, Hekler A, Enk AH, et al. Deep neural networks are superior to dermatologists in melanoma image classification [J]. Eur J Cancer, 2019, 119: 11-17.
11
Ehteshami Bejnordi B, Veta M, Johannes Van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer [J]. JAMA, 2017, 318(22): 2199-2210.
12
Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study [J]. The Lancet Oncology, 2018, 19(9): 1180-1191.
13
Yuan Z, Xu T, Cai J, et al. Development and validation of an image-based deep learning algorithm for detection of synchronous peritoneal carcinomatosis in colorectal cancer [J]. Ann Surg, 2020.
14
Hixson LJ, Fennerty MB, Sampliner RE, et al. Prospective study of the frequency and size distribution of polyps missed by colonoscopy [J]. J Natl Cancer Inst, 1990, 82(22): 1769-1772.
15
Rex DK. Maximizing detection of adenomas and cancers during colonoscopy [J]. Am J Gastroenterol, 2006, 101(12): 2866-2877.
16
Rex DK, Cutler CS, Lemmel GT, et al. Colonoscopic miss rates of adenomas determined by back-to-back colonoscopies [J]. Gastroenterology, 1997, 112(1): 24-28.
17
Vinsard DG, Mori Y, Misawa M, et al. Quality assurance of computer-aided detection and diagnosis in colonoscopy [J]. Gastrointest Endosc, 2019, 90(1): 55-63.
18
Kudo SE, Mori Y, Misawa M, et al. Artificial intelligence and colonoscopy: Current status and future perspectives [J]. Dig Endosc, 2019, 31(4): 363-371.
19
Hassan C, Pickhardt PJ, Rex DK. A resect and discard strategy would improve cost-effectiveness of colorectal cancer screening [J]. Clin Gastroenterol Hepatol, 2010, 8(10): 865-9, 869.e1-3.
20
Gross S, Trautwein C, Behrens A, et al. Computer-based classification of small colorectal polyps by using narrow-band imaging with optical magnification [J]. Gastrointest Endosc, 2011, 74(6): 1354-1359.
21
Kominami Y, Yoshida S, Tanaka S, et al. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy [J]. Gastrointest Endosc, 2016, 83(3): 643-649.
22
Wang P, Xiao X, Glissen Brown JR, et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy [J]. Nat Biomed Eng, 2018, 2(10): 741-748.
23
Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study [J]. Gut, 2019, 68(10): 1813-1819.
24
Lambin P, Rios-velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis [J]. Eur J Cancer, 2012, 48(4): 441-446.
25
Bibault JE, Giraud P, Housset M, et al. Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer [J]. Scientific Reports, 2018, 8(1): 12611.
26
李芊, 周欣元, 汪晓东, 等. 影像组学技术与结直肠癌临床应用研究进展 [J]. 中国普外基础与临床杂志, 2019, 26(10): 1253-1258.
27
Liang C, Huang Y, He L, et al. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer [J]. Oncotarget, 2016, 7(21): 31401-31412.
28
Wang F, Casalino LP, Khullar D. Deep learning in medicine-promise, progress, and challenges [J]. JAMA Intern Med, 2019, 179(3): 293-294.
29
Dong D, Tang L, Li ZY, et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer [J]. Ann Oncol, 2019, 30(3): 431-438.
30
卢云, 刘广伟. 人工智能在结直肠癌诊治中应用现状、难点及对策 [J]. 中国实用外科杂志, 2020, 40(3): 271-274.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[3] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[4] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[5] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[6] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[7] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[8] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[9] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[10] 郑大雯, 王健东. 胆囊癌辅助诊断研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 769-773.
[11] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[12] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[13] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[14] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[15] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
阅读次数
全文


摘要