切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2021, Vol. 10 ›› Issue (02) : 205 -210. doi: 10.3877/cma.j.issn.2095-3224.2021.02.015

所属专题: 文献

综述

结直肠癌PD-1/PD-L1阻断治疗的耐药研究现状
张童童1, 陈伟2, 于溯洋1, 赵士彭1,()   
  1. 1. 050051 石家庄,河北医科大学第三医院胃肠外科
    2. 050051 石家庄,创伤急救中心 河北省骨科研究所 河北省骨科生物力学重点实验室
  • 收稿日期:2020-11-03 出版日期:2021-04-25
  • 通信作者: 赵士彭

Research status of resistance to PD-1/PD-L1 blockade colorectal cancer immunotherapy

Tongtong Zhang1, Wei Chen2, Suyang Yu1, Shipeng Zhao1,()   

  1. 1. Department of Gastrointestinal Surgery, the Third Hospital Affiliated to Hebei Medical University; Shijiazhuang 050051, China
    2. Department of Traumatology, the Third Hospital Affiliated to Hebei Medical University, Orthopaedic Research Institute of Hebei Province, Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang 050051, China
  • Received:2020-11-03 Published:2021-04-25
  • Corresponding author: Shipeng Zhao
引用本文:

张童童, 陈伟, 于溯洋, 赵士彭. 结直肠癌PD-1/PD-L1阻断治疗的耐药研究现状[J]. 中华结直肠疾病电子杂志, 2021, 10(02): 205-210.

Tongtong Zhang, Wei Chen, Suyang Yu, Shipeng Zhao. Research status of resistance to PD-1/PD-L1 blockade colorectal cancer immunotherapy[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2021, 10(02): 205-210.

PD-1/PD-L1阻断治疗是一种新的肿瘤治疗策略,在过去的十年中,PD-1/PD-L1阻断治疗在很多的恶性肿瘤中应用,取得了一定成功。而对于结直肠癌,只有DNA错配修复蛋白缺失(dMMR)微卫星高度不稳定(MSI-H)患者对PD-1/PD-L1的阻断治疗有积极的反应。原发性和获得性耐药,最终可能导致患者的疾病进展。因此,PD-1/PD-L1阻断治疗的耐药仍是阻碍其进一步应用的重大挑战。为克服阻断治疗的耐药性,人们进行了大量基于耐药机制的研究。在这篇综述里,我们概述了PD-1/PD-L1阻断治疗的现状并对其耐药机制进行探讨。对逆转其耐药的方法进行了讨论和展望,希望对提高PD-1/PD-L1阻断治疗疗效有所裨益。

PD-1/PD-L1 blocking therapy is a new strategy for cancer treatment. In the past decade, PD-1/PD-L1 blocking therapy has been applied in a wide range of malignant tumors and achieved certain success. However, for colorectal cancer, only patients with deficiency mismatch repair (dMMR) and microsatellite instability high (MSI-H) have a positive response to PD-1/PD-L1 blocking therapy. Primary or acquired drug resistance may eventually lead to disease progression. Therefore, the resistance of PD-1/PD-L1 blocking therapy is still a major challenge hindering its further application. In order to overcome the resistance of blocking therapy, a large number of studies based on drug resistance mechanism have been carried out. In this review, we summarize the current status of PD-1/PD-L1 blocking therapy and explore the mechanism of drug resistance. The methods to reverse the drug resistance were prospected, hoping to improve the efficacy of PD-1/PD-L1 blocking therapy.

1
中华人民共和国国家卫生健康委员会医政医管局, 中华医学会肿瘤学分会. 中国结直肠癌诊疗规范(2020年版)[J]. 中华胃肠外科杂志, 2020, 23(6): 521-540.
2
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
3
Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential[J]. Cell, 2015, 161(2): 205-214.
4
Andrews LP, Yano H, Vignali DAA. Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups[J]. Nat Immunol, 2019, 20(11): 1425-1434.
5
Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy[J]. J Clin Oncol, 2015, 33(17): 1974-1982.
6
Ohigashi Y, Sho M, Yamada Y, et al. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer[J]. Clin Cancer Res, 2005, 11(8): 2947-2953.
7
Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor[J]. Immunity, 1999, 11(2): 141-151.
8
Qin S, Ren Z, Meng Z, et al. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, phase 2 trial[J]. Lancet Oncol, 2020, 21(4): 571-580.
9
Prestipino A, Zeiser R. Clinical implications of tumor-intrinsic mechanisms regulating PD-L1[J]. Sci Transl Med, 2019, 11(478): eaav4810.
10
Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints[J]. Cancer Discov, 2015, 5(1): 43-51.
11
Nakazawa A, Dotan I, Brimnes J, et al. The expression and function of costimulatory molecules B7H and B7-H1 on colonic epithelial cells[J]. Gastroenterology, 2004, 126(5): 1347-1357.
12
Gatalica Z, Snyder C, Maney T, et al. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type[J]. Cancer Epidemiol Biomarkers Prev, 2014, 23(12): 2965-2970.
13
Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints[J]. Cancer Discov, 2015, 5(1): 43-51.
14
Zang YS, Dai C, Xu X, et al. Comprehensive analysis of potential immunotherapy genomic biomarkers in 1000 Chinese patients with cancer[J]. Cancer Med, 2019, 8: 4699-4708.
15
Yang L, Xue R, Pan C. Prognostic and clinicopathological value of PD-L1 in colorectal cancer: a systematic review and meta-analysis[J]. Onco Targets Ther, 2019, 12: 3671-3682.
16
Chae YJ, Kim J, Heo H, et al. Magnetic resonance colonography enables the efficacy assessment of immune checkpoint inhibitors in an orthotopic colorectal cancer mouse model[J]. Transl Oncol, 2019, 12(9): 1264-1270.
17
Li Y, He M, Zhou Y, et al. The prognostic and clinicopathological roles of PD-L1 expression in colorectal cancer: A systematic review and meta-analysis[J]. Front Pharmacol, 2019, 10: 139.
18
Lipson EJ, Sharfman WH, Drake CG, et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody[J]. Clin Cancer Res, 2013, 19(2): 462-468.
19
Egen JG, Ouyang W, Wu LC. Human anti-tumor immunity: insights from immunotherapy clinical trials[J]. Immunity, 2020, 52(1): 36-54.
20
Roemer MG, Advani RH, Redd RA, et al. Classical hodgkin lymphoma with reduced β2M/MHC class I expression is associated with inferior outcome independent of 9p24.1 status[J]. Cancer Immunol Res, 2016, 4(11): 910-916.
21
Buckowitz A, Knaebel HP, Benner A, et al. Microsatellite instability in colorectal cancer is associated with local lymphocyte infiltration and low frequency of distant metastases[J]. Br J Cancer, 2005, 92(9): 1746-1753.
22
Gryfe R, Kim H, Hsieh ET, et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer[J]. N Engl J Med, 2000, 342(2): 69-77.
23
Kloor M, Michel S, von Knebel Doeberitz M. Immune evasion of microsatellite unstable colorectal cancers[J]. Int J Cancer, 2010, 127(5): 1001-1010.
24
Rooney MS, Shukla SA, Wu CJ, et al. Molecular and genetic properties of tumors associated with local immune cytolytic activity[J]. Cell, 2015, 160(1-2): 48-61.
25
Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition[J]. N Engl J Med, 2017, 377(25): 2500-2501.
26
Grasso CS, Giannakis M, Wells DK, et al. Genetic mechanisms of immune evasion in colorectal cancer[J]. Cancer Discov, 2018, 8(6): 730-749.
27
Ren D, Hua Y, Yu B, et al. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy[J]. Mol Cancer, 2020, 19(1): 19.
28
Toor SM, Sasidharan Nair V, Decock J, et al. Immune checkpoints in the tumor microenvironment[J]. Semin Cancer Biol, 2020, 65: 1-12.
29
Shayan G, Srivastava R, Li J, et al. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer[J]. Oncoimmunology, 2016, 6(1): e1261779.
30
Nowicki TS, Hu-Lieskovan S, Ribas A. Mechanisms of resistance to PD-1 and PD-L1 blockade[J]. Cancer J, 2018, 24(1): 47-53.
31
Jordan KR, Loman BR, Bailey MT, et al. Gut microbiota-immune-brain interactions in chemotherapy-associated behavioral comorbidities[J]. Cancer, 2018, 124(20): 3990-3999.
32
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3): 548-563.e16.
33
Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide[J]. Science, 2013, 342(6161): 971-976.

URL    
34
Sivan A, Corrales L, Hubert N, et al. Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 2015, 350(6264): 1084-1089.
35
Maybin JA, Murray AA, Saunders PTK, et al. Hypoxia and hypoxia inducible factor-1α are required for normal endometrial repair during menstruation[J]. Nat Commun, 2018, 9(1): 295.
36
Tang YA, Chen YF, Bao Y, et al. Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer[J]. Proc Natl Acad Sci USA, 2018, 115(26): E5990-E5999.
37
Kinugasa S, Horikawa M, Kawashima T, et al. Effect of proteinuria in patients receiving anti-VEGF therapy for advanced colorectal cancer[J]. Gan To Kagaku Ryoho, 2019, 46(8): 1334-1336.
38
Beyaert R, Beaugerie L, Van Assche G, et al. Cancer risk in immune-mediated inflammatory diseases (IMID)[J]. Mol Cancer, 2013, 12(1): 98.
39
Verdeil G, Fuertes Marraco SA, Murray T, et al. From T cell "exhaustion" to anti-cancer immunity[J]. Biochim Biophys Acta, 2016, 1865(1): 49-57.
40
Guo L, Zhang Y, Zhang L, et al. MicroRNAs, TGF-β signaling, and the inflammatory microenvironment in cancer[J]. Tumour Biol, 2016, 37(1): 115-25.
41
Ravi R, Noonan KA, PhamV, et al. Bifunctional immune check-point-targeted antibody-legand traps that simultaneously disable TGF-β enhance the efficacy of cancer immunotherapy [J]. Nat Commun, 2018, 9(1): 741.
42
Lin RLm, Zhao LJ. Mechanistic basis and clinical relevance of the role of transforming growth factor-β in cancer [J]. Cancer Biol Med, 2015, 12(4): 385-393.
43
Vincent J, Mignot G, Chalmin F, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity[J]. Cancer Res, 2010, 70(8): 3052-3061.
44
Limagne E, Euvrard R, Thibaudin M, et al. Accumulation of MDSC and Th17 cells in patients with metastatic colorectal cancer predicts the efficacy of a FOLFOX-Bevacizumab drug treatment regimen[J]. Cancer Res, 2016, 76(18): 5241-5252.
45
Shahda S, Noonan AM, Bekaii-Saab TS, et al. A phase II study of pembrolizumab in combination with mFOLFOX6 for patients with advanced colorectal cancer[J]. J Clin Oncol, 2017, 35(Suppl 15): 3541.
46
Segal NH, Kemeny NE, Cercek A, et al. Non-randomized phase Ⅱ study to assess the efficacy of pembrolizumab (Pem) plus radiotherapy(RT) or ablation in mismatch repair proficient (pMMR) metastatic colorectal cancer (mCRC) patients[J]. J Clin Oncol, 2016, 34(Suppl 15): 3539.
47
Parikh AR, Clark JW, Wo JYL, et al. A phase Ⅱ study of ipilimumab and nivolumab with radiation in microsatellite stable (MSS) metastatic colorectal adenocarcinoma (mCRC)[J]. J Clin Oncol, 2019, 37(Suppl 15): 3514.
48
Zelenay S, van der Veen AG, Böttcher JP, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity[J]. Cell, 2015, 162(6): 1257-1270.
49
Fukuoka S, Hara H, Takahashi N, et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603)[J]. J Clin Oncol, 2020, 38(18): 2053-2061.
50
Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 255.
51
Overman MJ, Lonardi S, Wong KYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer[J]. J Clin Oncol, 2018, 36(8): 773-779.
52
Overman MJ, Lonardi S, Wong KYM, et al. Nivolumab(NIVO)+low-dose ipilimumab(IPI) in previously treated patients(pts) with microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer(mCRC):Long-term follow-up [J]. J Clin Oncol, 2019,37(Suppl 4): 635.
53
Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers[J]. Nat Med, 2020, 26(4): 566-576.
54
Lan Y, Zhang D, Xu C, et al. Enhanced preclinial antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β[J]. Sci Transl Med, 2018, 10(424): eann 5488.
55
Terabe M, Robertson FC, Clark K, et al. Blockadeofonly TGF-β 1 and 2 is sufficient to enhance the efficacy of vaccine and PD-1 checkpoint blockade immunotherapy[J].Oncoimmunology, 2017,6(5): e1308616.
56
Strauss J, Heery CR, Schlom J, et al. Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGF-β, in advanced solid tumors[J]. Clin Cancer Res,2018,24(6): 1287-1295.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[5] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[6] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[7] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[8] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[9] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[10] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[11] 黄怡诚, 陆晨, 孙司正, 喻春钊. 肝特异性转录因子FOXA2在人结直肠癌肝转移阶梯模型中的表达变化及其意义[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 396-403.
[12] 刘祺, 张凯, 李建男, 刘铜军. 结直肠癌肝转移生物治疗的现状及进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 415-419.
[13] 吴寅, 陈智琴, 高勇, 权明. Her-2阳性结直肠癌的诊治进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 420-425.
[14] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[15] 孙昕, 程海波, 沈卫星. 基于全转录组学探讨仙连解毒方治疗Ⅲ期结直肠癌患者的疗效机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 277-283.
阅读次数
全文


摘要