1 |
中华人民共和国国家卫生健康委员会医政医管局, 中华医学会肿瘤学分会. 中国结直肠癌诊疗规范(2020年版)[J]. 中华胃肠外科杂志, 2020, 23(6): 521-540.
|
2 |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
|
3 |
Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential[J]. Cell, 2015, 161(2): 205-214.
|
4 |
Andrews LP, Yano H, Vignali DAA. Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups[J]. Nat Immunol, 2019, 20(11): 1425-1434.
|
5 |
Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy[J]. J Clin Oncol, 2015, 33(17): 1974-1982.
|
6 |
Ohigashi Y, Sho M, Yamada Y, et al. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer[J]. Clin Cancer Res, 2005, 11(8): 2947-2953.
|
7 |
Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor[J]. Immunity, 1999, 11(2): 141-151.
|
8 |
Qin S, Ren Z, Meng Z, et al. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, phase 2 trial[J]. Lancet Oncol, 2020, 21(4): 571-580.
|
9 |
Prestipino A, Zeiser R. Clinical implications of tumor-intrinsic mechanisms regulating PD-L1[J]. Sci Transl Med, 2019, 11(478): eaav4810.
|
10 |
Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints[J]. Cancer Discov, 2015, 5(1): 43-51.
|
11 |
Nakazawa A, Dotan I, Brimnes J, et al. The expression and function of costimulatory molecules B7H and B7-H1 on colonic epithelial cells[J]. Gastroenterology, 2004, 126(5): 1347-1357.
|
12 |
Gatalica Z, Snyder C, Maney T, et al. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type[J]. Cancer Epidemiol Biomarkers Prev, 2014, 23(12): 2965-2970.
|
13 |
Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints[J]. Cancer Discov, 2015, 5(1): 43-51.
|
14 |
Zang YS, Dai C, Xu X, et al. Comprehensive analysis of potential immunotherapy genomic biomarkers in 1000 Chinese patients with cancer[J]. Cancer Med, 2019, 8: 4699-4708.
|
15 |
Yang L, Xue R, Pan C. Prognostic and clinicopathological value of PD-L1 in colorectal cancer: a systematic review and meta-analysis[J]. Onco Targets Ther, 2019, 12: 3671-3682.
|
16 |
Chae YJ, Kim J, Heo H, et al. Magnetic resonance colonography enables the efficacy assessment of immune checkpoint inhibitors in an orthotopic colorectal cancer mouse model[J]. Transl Oncol, 2019, 12(9): 1264-1270.
|
17 |
Li Y, He M, Zhou Y, et al. The prognostic and clinicopathological roles of PD-L1 expression in colorectal cancer: A systematic review and meta-analysis[J]. Front Pharmacol, 2019, 10: 139.
|
18 |
Lipson EJ, Sharfman WH, Drake CG, et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody[J]. Clin Cancer Res, 2013, 19(2): 462-468.
|
19 |
Egen JG, Ouyang W, Wu LC. Human anti-tumor immunity: insights from immunotherapy clinical trials[J]. Immunity, 2020, 52(1): 36-54.
|
20 |
Roemer MG, Advani RH, Redd RA, et al. Classical hodgkin lymphoma with reduced β2M/MHC class I expression is associated with inferior outcome independent of 9p24.1 status[J]. Cancer Immunol Res, 2016, 4(11): 910-916.
|
21 |
Buckowitz A, Knaebel HP, Benner A, et al. Microsatellite instability in colorectal cancer is associated with local lymphocyte infiltration and low frequency of distant metastases[J]. Br J Cancer, 2005, 92(9): 1746-1753.
|
22 |
Gryfe R, Kim H, Hsieh ET, et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer[J]. N Engl J Med, 2000, 342(2): 69-77.
|
23 |
Kloor M, Michel S, von Knebel Doeberitz M. Immune evasion of microsatellite unstable colorectal cancers[J]. Int J Cancer, 2010, 127(5): 1001-1010.
|
24 |
Rooney MS, Shukla SA, Wu CJ, et al. Molecular and genetic properties of tumors associated with local immune cytolytic activity[J]. Cell, 2015, 160(1-2): 48-61.
|
25 |
Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition[J]. N Engl J Med, 2017, 377(25): 2500-2501.
|
26 |
Grasso CS, Giannakis M, Wells DK, et al. Genetic mechanisms of immune evasion in colorectal cancer[J]. Cancer Discov, 2018, 8(6): 730-749.
|
27 |
Ren D, Hua Y, Yu B, et al. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy[J]. Mol Cancer, 2020, 19(1): 19.
|
28 |
Toor SM, Sasidharan Nair V, Decock J, et al. Immune checkpoints in the tumor microenvironment[J]. Semin Cancer Biol, 2020, 65: 1-12.
|
29 |
Shayan G, Srivastava R, Li J, et al. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer[J]. Oncoimmunology, 2016, 6(1): e1261779.
|
30 |
Nowicki TS, Hu-Lieskovan S, Ribas A. Mechanisms of resistance to PD-1 and PD-L1 blockade[J]. Cancer J, 2018, 24(1): 47-53.
|
31 |
Jordan KR, Loman BR, Bailey MT, et al. Gut microbiota-immune-brain interactions in chemotherapy-associated behavioral comorbidities[J]. Cancer, 2018, 124(20): 3990-3999.
|
32 |
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3): 548-563.e16.
|
33 |
Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide[J]. Science, 2013, 342(6161): 971-976.
URL
|
34 |
Sivan A, Corrales L, Hubert N, et al. Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 2015, 350(6264): 1084-1089.
|
35 |
Maybin JA, Murray AA, Saunders PTK, et al. Hypoxia and hypoxia inducible factor-1α are required for normal endometrial repair during menstruation[J]. Nat Commun, 2018, 9(1): 295.
|
36 |
Tang YA, Chen YF, Bao Y, et al. Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer[J]. Proc Natl Acad Sci USA, 2018, 115(26): E5990-E5999.
|
37 |
Kinugasa S, Horikawa M, Kawashima T, et al. Effect of proteinuria in patients receiving anti-VEGF therapy for advanced colorectal cancer[J]. Gan To Kagaku Ryoho, 2019, 46(8): 1334-1336.
|
38 |
Beyaert R, Beaugerie L, Van Assche G, et al. Cancer risk in immune-mediated inflammatory diseases (IMID)[J]. Mol Cancer, 2013, 12(1): 98.
|
39 |
Verdeil G, Fuertes Marraco SA, Murray T, et al. From T cell "exhaustion" to anti-cancer immunity[J]. Biochim Biophys Acta, 2016, 1865(1): 49-57.
|
40 |
Guo L, Zhang Y, Zhang L, et al. MicroRNAs, TGF-β signaling, and the inflammatory microenvironment in cancer[J]. Tumour Biol, 2016, 37(1): 115-25.
|
41 |
Ravi R, Noonan KA, PhamV, et al. Bifunctional immune check-point-targeted antibody-legand traps that simultaneously disable TGF-β enhance the efficacy of cancer immunotherapy [J]. Nat Commun, 2018, 9(1): 741.
|
42 |
Lin RLm, Zhao LJ. Mechanistic basis and clinical relevance of the role of transforming growth factor-β in cancer [J]. Cancer Biol Med, 2015, 12(4): 385-393.
|
43 |
Vincent J, Mignot G, Chalmin F, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity[J]. Cancer Res, 2010, 70(8): 3052-3061.
|
44 |
Limagne E, Euvrard R, Thibaudin M, et al. Accumulation of MDSC and Th17 cells in patients with metastatic colorectal cancer predicts the efficacy of a FOLFOX-Bevacizumab drug treatment regimen[J]. Cancer Res, 2016, 76(18): 5241-5252.
|
45 |
Shahda S, Noonan AM, Bekaii-Saab TS, et al. A phase II study of pembrolizumab in combination with mFOLFOX6 for patients with advanced colorectal cancer[J]. J Clin Oncol, 2017, 35(Suppl 15): 3541.
|
46 |
Segal NH, Kemeny NE, Cercek A, et al. Non-randomized phase Ⅱ study to assess the efficacy of pembrolizumab (Pem) plus radiotherapy(RT) or ablation in mismatch repair proficient (pMMR) metastatic colorectal cancer (mCRC) patients[J]. J Clin Oncol, 2016, 34(Suppl 15): 3539.
|
47 |
Parikh AR, Clark JW, Wo JYL, et al. A phase Ⅱ study of ipilimumab and nivolumab with radiation in microsatellite stable (MSS) metastatic colorectal adenocarcinoma (mCRC)[J]. J Clin Oncol, 2019, 37(Suppl 15): 3514.
|
48 |
Zelenay S, van der Veen AG, Böttcher JP, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity[J]. Cell, 2015, 162(6): 1257-1270.
|
49 |
Fukuoka S, Hara H, Takahashi N, et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603)[J]. J Clin Oncol, 2020, 38(18): 2053-2061.
|
50 |
Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 255.
|
51 |
Overman MJ, Lonardi S, Wong KYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer[J]. J Clin Oncol, 2018, 36(8): 773-779.
|
52 |
Overman MJ, Lonardi S, Wong KYM, et al. Nivolumab(NIVO)+low-dose ipilimumab(IPI) in previously treated patients(pts) with microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer(mCRC):Long-term follow-up [J]. J Clin Oncol, 2019,37(Suppl 4): 635.
|
53 |
Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers[J]. Nat Med, 2020, 26(4): 566-576.
|
54 |
Lan Y, Zhang D, Xu C, et al. Enhanced preclinial antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β[J]. Sci Transl Med, 2018, 10(424): eann 5488.
|
55 |
Terabe M, Robertson FC, Clark K, et al. Blockadeofonly TGF-β 1 and 2 is sufficient to enhance the efficacy of vaccine and PD-1 checkpoint blockade immunotherapy[J].Oncoimmunology, 2017,6(5): e1308616.
|
56 |
Strauss J, Heery CR, Schlom J, et al. Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGF-β, in advanced solid tumors[J]. Clin Cancer Res,2018,24(6): 1287-1295.
|