切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2021, Vol. 10 ›› Issue (02) : 201 -204. doi: 10.3877/cma.j.issn.2095-3224.2021.02.014

所属专题: 文献

综述

胆汁酸参与结肠炎症和结肠癌发生的研究进展
马天翼1, 王锡山2,()   
  1. 1. 150086 哈尔滨医科大学附属第二医院结直肠肿瘤外科
    2. 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院结直肠外科
  • 收稿日期:2020-07-16 出版日期:2021-04-25
  • 通信作者: 王锡山
  • 基金资助:
    国家自然科学基金面上项目(82072732); 北京市科技计划(D171100002617004)

Research progress on the involvement of bile acids in colon inflammation and colon cancer

Tianyi Ma1, Xishan Wang2,()   

  1. 1. Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
    2. Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
  • Received:2020-07-16 Published:2021-04-25
  • Corresponding author: Xishan Wang
引用本文:

马天翼, 王锡山. 胆汁酸参与结肠炎症和结肠癌发生的研究进展[J]. 中华结直肠疾病电子杂志, 2021, 10(02): 201-204.

Tianyi Ma, Xishan Wang. Research progress on the involvement of bile acids in colon inflammation and colon cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2021, 10(02): 201-204.

结直肠癌的发生和发展与多种因素相关,其中胆汁酸因素逐渐引起学者们的重视。人体胆汁酸在相关因子的调解下,形成了具有生理功能并保持无毒作用的胆汁酸池。虽然胆汁酸相关代谢与肠道炎症存在复杂联系,但胆汁酸在结肠癌发生和发展中的确定机制尚未明确,本文主要对胆汁酸与结肠炎症和恶性肿瘤发生的相关性进行综述。

The occurrence and development of colorectal cancer are related to many factors, among which bile acid has been paid more and more attention. Human bile acids form a physiological and non-toxic bile acid pool mediated by related factors. Although bile acid-related metabolism has complex relationship with intestinal inflammation, the mechanism of bile acid in the development of colon cancer is not clear. This article reviews the relationship between bile acid and colon inflammation and malignant tumor.

1
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30.
2
American Cancer Society. Cancer Facts & Figures 2016[R]. Atlanta, GA, USA: American Cancer Society, 2016.
3
Simon K. Colorectal cancer development and advances in screening[J]. Clin Interv Aging, 2016, 11: 967-976.
4
Siegel RL, Miller KD, Goding SA, et al. Colorectal cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(3): 145-164.
5
Zacek P, Bukowski M, Mehus A, et al. Dietary saturated fatty acid type impacts obesity-induced metabolic dysfunction and plasma lipidomic signatures in mice[J]. J Nutr Biochem, 2019, 64: 32-44.
6
O'Neill AM, Burrington CM, Gillaspie EA, et al. High-fat Western diet-induced obesity contributes to increased tumor growth in mouse models of human colon cancer[J]. Nutr Res, 2016, 36(12): 1325-1334.
7
Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease[J]. Nature, 2011, 474(7351): 298-306.
8
Tsuei J, Chau T, Mills D, et al. Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer[J]. Exp Biol Med, 2014, 239(11): 1489-1504.
9
Hofmann AF. The syndrome of ileal disease and the broken enterohepatic circulation: cholerheic enteropathy[J]. Gastroenterology, 1967, 52(4): 752-757.
10
Walters JRF, Tasleem AM, Omer OS, et al. A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis[J]. Clin Gastroenterol Hepatol, 2009, 7(11): 1189-1194.
11
Chen F, Ma L, Sartor RB, et al. Inflammatory-mediated repression of the rat ileal sodium-dependent bile acid transporter by c-fos nuclear translocation[J]. Gastroenterology 2002, 123(6): 2005-2016.
12
Neimark E, Chen F, Li X, et al. c-Fos is a critical mediator of inammatorymediated repression of the apical sodium-dependent bile acid transporter[J]. Gastroenterology, 2006, 131(2): 554-567.
13
O'Connor CJ, Wallace RG, Iwamoto K, et al. Bile salt damage of egg phosphatidylcholine liposomes[J]. Biochim Biophys Acta, 1985, 817(1): 95-102.
14
Schölmerich J, Becher MS, Schmidt K, et al. Influence of hydroxylation and conjugation of bile salts on their membrane-damaging properties–studies on isolated hepatocytes and lipid membrane vesicles[J]. Hepatology, 1984, 4(4): 661-666.
15
Powell AA, LaRue JM, Batta AK,et al. Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in HCT116 cells[J]. Biochem J 2001, 356(Pt 2): 481-486.
16
Shekels LL, Beste JE, Ho SB. Tauroursodeoxycholic acid protects in vitro models of human colonic cancer cells from cytotoxic effects of hydrophobic bile acids[J]. J Lab Clin Med, 1996, 127(1): 57-66.
17
Kakiyama G, Pandak WM, Gillevet PM, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis[J]. J Hepatol, 2013, 58(5): 949-955.
18
Atarashi K, Tanoue T, Oshima K,et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota[J]. Nature, 2014, 500(7461): 232-236.
19
Llopis M, Antolin M, Carol M, et al. Lactobacillus casei downregulates commensals' inflammatory signals in Crohn's disease mucosa[J]. Inflamm Bowel Dis, 2009, 15(2): 275-283.
20
Darfeuille-Michaud A, Boudeau J, Bulois P, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease[J]. Gastroenterology, 2004, 127(2): 412-421.
21
Bjarnason I, Zanelli G, Smith T, et al. Nonsteroidal antiinflammatory druginduced intestinal inflammation in humans[J]. Gastroenterology, 1987, 93(3): 480-489.
22
Bjarnason I, Peters TJ. Intestinal permeability, non-steroidal antiinflammatory drug enteropathy and inflammatory bowel disease: an overview[J]. Gut, 1989, 30(Spec_No): 22-28.
23
Elson CO, Sartor RB, Tennyson GS, et al. Experimental-models of inflammatory bowel-disease[J]. Gastroenterology, 1995, 109(4): 1344-1367.
24
Somasundaram S, Rafi S, Hayllar J, et al. Mitochondrial damage: a possible mechanism of the "topical" phase of NSAID induced injury to the rat intestine[J]. Gut, 1997, 41(3): 344-353.
25
Sigthorsson G, Simpson RJ, Walley M, et al. COX-1 and 2, intestinal integrity, and pathogenesis of nonsteroidal anti-inflammatory drug enteropathy in mice[J]. Gastroenterology, 2002, 122(7): 1913-1923.
26
Somasundaram S, Hayllar H, Rafi S, et al. The biochemical basis of nonsteroidal anti-inflammatory druginduced damage to the gastrointestinal tract: a review and a hypothesis[J]. Scand J Gastroenterol, 1995, 30(4): 289-299.
27
Wax J, Clinger WA, Varner P, et al. Relationship of enterohepatic cycle to ulcerogenesis in rat small bowel with flufenamic acid[J]. Gastroenterology, 1970, 58(6): 772-780.
28
Taylor NS, Bartlett JG. Binding of clostridium difficile cytotoxin and vancomycin by anion-exchange resins[J]. J Infect Dis, 1980, 141(1): 92-97.
29
Bailey ME. Endotoxin, bile-salts and renal-function in obstructive-jaundice[J]. Br J Surg, 1976, 63(10): 774-778.
30
Floch MH, Gershengoren W, Elliott S, et al. Bile acid inhibition of the intestinal microflora-a function for simple bile acids?[J]. Gastroenterology, 1971, 61(2): 228-233.
31
Williams RC, Showalter R, Kern F. In vivo effect of bile salts and cholestyramine on intestinal anaerobic bacteria[J]. Gastroenterology, 1975, 69(2): 483-491.
32
Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor[J]. Proc Natl Acad Sci USA, 2006, 103(10): 3920-3925.
33
Shekels LL, Lyftogt CT, Ho SB. Bile acid-induced alterations of mucin production in differentiated human colon cancer cell lines[J]. Int J Biochem Cell Biol, 1996, 28(2): 193-201.
34
Strauch ED, Yamaguchi J, Bass BL,et al. Bile salts regulate intestinal epithelial cell migration by nuclear factor-kappa B-induced expression of transforming growth factor-beta[J]. J Am Coll Surg, 2003, 197(6): 974-984.
35
Yamaguchi J, Toledo A, Bass BL, et al. Taurodeoxycholate increases intestinal epithelial cell proliferation through c-myc expression[J]. Surgery, 2004, 135(2): 215-221.
36
Bernardes-Silva CF, AOMCDami~ao, Sipahi AM, et al. Ursodeoxycholic acid ameliorates experimental ileitis counteracting intestinal barrier dysfunction and oxidative stress[J]. Dig Dis Sci 2004, 49(10): 1569-1574.
37
Kullmann F, Gross V, Ruschoff J, et al. Effect of ursodeoxycholic acid on the inflammatory activity of indomethacin-induced intestinal inflammation in rats[J]. Z Gastroenterol, 1997, 35(3): 171-178.
38
Uchida A, Yamada T, Hayakawa T, et al. Taurochenodeoxycholic acid ameliorates and ursodeoxycholic acid exacerbates small intestinal inflammation[J]. Am J Physiol, 1997, 272(5 Pt 1): G1249-1257.
39
Cipriani S, Mencarelli A, Bruno A, et al. Activation of the bile acid receptor GPBAR1 protects against gastrointestinal injury caused by nonsteroidal anti-inflammatory drugs and aspirin in mice[J]. Br J Pharmacol 2013, 168(1): 225-237.
40
Fiorucci S, Antonelli E, Distrutti E,et al. Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs[J]. Gastroenterology, 2005, 129(4): 1210-1224.
41
Kong J, Zhang Z, Musch MW, et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(1): G208-216.
42
Makishima M, Lu TT, Xie W, et al. Vitamin D receptor as an intestinal bile acid sensor[J]. Science, 2002, 296(5571): 1313-1316.
43
Fearon ER,Vogelstein B. A genetic model for colorectal tumorigenesis[J]. Cell. Metab, 1990, 61(5): 759-767.
44
Modica S, Murzilli S, Salvatore L, et al. Nuclear bile acid receptor FXR protects against intestinal tumorigenesis[J]. Cancer Res, 2008, 68(23): 9589-9594.
45
Maran RR, Thomas A, Roth M, et al. Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development[J]. J Pharm Exp Ther, 2009, 328(2): 469-477.
46
Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause of colon cancer[J]. World J Surg Oncol, 2014, 12: 164.
47
Payne CM, Bernstein C, Dvorak K, et al. Hydrophobic bile acids, genomic instability, Darwinian selection, and colon carcinogenesis[J]. Clin Exp Gastroenterol, 2008, 1: 19-47.
48
Washo-Stultz D, Crowley-Weber CL, KaterinaDvorakova, et al. Role of mitochondrial complexes I and II, reactive oxygen species and arachidonic acid metabolism in deoxycholate-induced apoptosis[J]. Cancer Lett, 2002, 177(2): 129-144.
49
Ridlon JM, Bajaj JS. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics[J]. Acta Pharm Sin B, 2015, 5(2): 99-105.
50
De Gottardi A, Touri F, Maurer CA, et al. The bile acid nuclear receptor FXR and the bile acid binding protein IBABP are differently expressed in colon cancer[J]. Dig Dis Sci, 2004, 49(6): 982-989.
51
Bailey AM, Zhan L, Maru D, et al. FXR silencing in human colon cancer by DNA methylation and KRAS signaling[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306(1): G48-G58.
52
Lax S, Schauer G, Prein K, et al. Expression of the nuclear bile acid receptor/farnesoid X receptor is reduced in human colon carcinoma compared to nonneoplastic mucosa independent from site and may be associated with adverse prognosis[J]. Int J Cancer, 2012, 130(10): 2232-2239.
53
Torres J, Bao XL, Iuga AC, et al. Farnesoid X receptor expression is decreased in colonic mucosa of patients with primary sclerosing cholangitis and colitis-associated neoplasia[J]. Inflamm Bowel Dis, 2013, 19(2): 275-282.

URL    
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[5] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[6] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[7] 常剑, 邱峰, 毛郁琪. 摄食抑制因子-1与腹腔镜结直肠癌根治术后肝转移的关系分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 502-505.
[8] 王晓燕, 肖佑, 肖戈, 王真权. 老年结直肠癌肺转移CT特征及高危因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 506-509.
[9] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[10] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[11] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[12] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[13] 黄怡诚, 陆晨, 孙司正, 喻春钊. 肝特异性转录因子FOXA2在人结直肠癌肝转移阶梯模型中的表达变化及其意义[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 396-403.
[14] 刘祺, 张凯, 李建男, 刘铜军. 结直肠癌肝转移生物治疗的现状及进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 415-419.
[15] 吴寅, 陈智琴, 高勇, 权明. Her-2阳性结直肠癌的诊治进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 420-425.
阅读次数
全文


摘要