切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2021, Vol. 10 ›› Issue (02) : 201 -204. doi: 10.3877/cma.j.issn.2095-3224.2021.02.014

所属专题: 文献

综述

胆汁酸参与结肠炎症和结肠癌发生的研究进展
马天翼1, 王锡山2,()   
  1. 1. 150086 哈尔滨医科大学附属第二医院结直肠肿瘤外科
    2. 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院结直肠外科
  • 收稿日期:2020-07-16 出版日期:2021-04-25
  • 通信作者: 王锡山
  • 基金资助:
    国家自然科学基金面上项目(82072732); 北京市科技计划(D171100002617004)

Research progress on the involvement of bile acids in colon inflammation and colon cancer

Tianyi Ma1, Xishan Wang2,()   

  1. 1. Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
    2. Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
  • Received:2020-07-16 Published:2021-04-25
  • Corresponding author: Xishan Wang
引用本文:

马天翼, 王锡山. 胆汁酸参与结肠炎症和结肠癌发生的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2021, 10(02): 201-204.

Tianyi Ma, Xishan Wang. Research progress on the involvement of bile acids in colon inflammation and colon cancer[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2021, 10(02): 201-204.

结直肠癌的发生和发展与多种因素相关,其中胆汁酸因素逐渐引起学者们的重视。人体胆汁酸在相关因子的调解下,形成了具有生理功能并保持无毒作用的胆汁酸池。虽然胆汁酸相关代谢与肠道炎症存在复杂联系,但胆汁酸在结肠癌发生和发展中的确定机制尚未明确,本文主要对胆汁酸与结肠炎症和恶性肿瘤发生的相关性进行综述。

The occurrence and development of colorectal cancer are related to many factors, among which bile acid has been paid more and more attention. Human bile acids form a physiological and non-toxic bile acid pool mediated by related factors. Although bile acid-related metabolism has complex relationship with intestinal inflammation, the mechanism of bile acid in the development of colon cancer is not clear. This article reviews the relationship between bile acid and colon inflammation and malignant tumor.

1
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30.
2
American Cancer Society. Cancer Facts & Figures 2016[R]. Atlanta, GA, USA: American Cancer Society, 2016.
3
Simon K. Colorectal cancer development and advances in screening[J]. Clin Interv Aging, 2016, 11: 967-976.
4
Siegel RL, Miller KD, Goding SA, et al. Colorectal cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(3): 145-164.
5
Zacek P, Bukowski M, Mehus A, et al. Dietary saturated fatty acid type impacts obesity-induced metabolic dysfunction and plasma lipidomic signatures in mice[J]. J Nutr Biochem, 2019, 64: 32-44.
6
O'Neill AM, Burrington CM, Gillaspie EA, et al. High-fat Western diet-induced obesity contributes to increased tumor growth in mouse models of human colon cancer[J]. Nutr Res, 2016, 36(12): 1325-1334.
7
Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease[J]. Nature, 2011, 474(7351): 298-306.
8
Tsuei J, Chau T, Mills D, et al. Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer[J]. Exp Biol Med, 2014, 239(11): 1489-1504.
9
Hofmann AF. The syndrome of ileal disease and the broken enterohepatic circulation: cholerheic enteropathy[J]. Gastroenterology, 1967, 52(4): 752-757.
10
Walters JRF, Tasleem AM, Omer OS, et al. A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis[J]. Clin Gastroenterol Hepatol, 2009, 7(11): 1189-1194.
11
Chen F, Ma L, Sartor RB, et al. Inflammatory-mediated repression of the rat ileal sodium-dependent bile acid transporter by c-fos nuclear translocation[J]. Gastroenterology 2002, 123(6): 2005-2016.
12
Neimark E, Chen F, Li X, et al. c-Fos is a critical mediator of inammatorymediated repression of the apical sodium-dependent bile acid transporter[J]. Gastroenterology, 2006, 131(2): 554-567.
13
O'Connor CJ, Wallace RG, Iwamoto K, et al. Bile salt damage of egg phosphatidylcholine liposomes[J]. Biochim Biophys Acta, 1985, 817(1): 95-102.
14
Schölmerich J, Becher MS, Schmidt K, et al. Influence of hydroxylation and conjugation of bile salts on their membrane-damaging properties–studies on isolated hepatocytes and lipid membrane vesicles[J]. Hepatology, 1984, 4(4): 661-666.
15
Powell AA, LaRue JM, Batta AK,et al. Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in HCT116 cells[J]. Biochem J 2001, 356(Pt 2): 481-486.
16
Shekels LL, Beste JE, Ho SB. Tauroursodeoxycholic acid protects in vitro models of human colonic cancer cells from cytotoxic effects of hydrophobic bile acids[J]. J Lab Clin Med, 1996, 127(1): 57-66.
17
Kakiyama G, Pandak WM, Gillevet PM, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis[J]. J Hepatol, 2013, 58(5): 949-955.
18
Atarashi K, Tanoue T, Oshima K,et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota[J]. Nature, 2014, 500(7461): 232-236.
19
Llopis M, Antolin M, Carol M, et al. Lactobacillus casei downregulates commensals' inflammatory signals in Crohn's disease mucosa[J]. Inflamm Bowel Dis, 2009, 15(2): 275-283.
20
Darfeuille-Michaud A, Boudeau J, Bulois P, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease[J]. Gastroenterology, 2004, 127(2): 412-421.
21
Bjarnason I, Zanelli G, Smith T, et al. Nonsteroidal antiinflammatory druginduced intestinal inflammation in humans[J]. Gastroenterology, 1987, 93(3): 480-489.
22
Bjarnason I, Peters TJ. Intestinal permeability, non-steroidal antiinflammatory drug enteropathy and inflammatory bowel disease: an overview[J]. Gut, 1989, 30(Spec_No): 22-28.
23
Elson CO, Sartor RB, Tennyson GS, et al. Experimental-models of inflammatory bowel-disease[J]. Gastroenterology, 1995, 109(4): 1344-1367.
24
Somasundaram S, Rafi S, Hayllar J, et al. Mitochondrial damage: a possible mechanism of the "topical" phase of NSAID induced injury to the rat intestine[J]. Gut, 1997, 41(3): 344-353.
25
Sigthorsson G, Simpson RJ, Walley M, et al. COX-1 and 2, intestinal integrity, and pathogenesis of nonsteroidal anti-inflammatory drug enteropathy in mice[J]. Gastroenterology, 2002, 122(7): 1913-1923.
26
Somasundaram S, Hayllar H, Rafi S, et al. The biochemical basis of nonsteroidal anti-inflammatory druginduced damage to the gastrointestinal tract: a review and a hypothesis[J]. Scand J Gastroenterol, 1995, 30(4): 289-299.
27
Wax J, Clinger WA, Varner P, et al. Relationship of enterohepatic cycle to ulcerogenesis in rat small bowel with flufenamic acid[J]. Gastroenterology, 1970, 58(6): 772-780.
28
Taylor NS, Bartlett JG. Binding of clostridium difficile cytotoxin and vancomycin by anion-exchange resins[J]. J Infect Dis, 1980, 141(1): 92-97.
29
Bailey ME. Endotoxin, bile-salts and renal-function in obstructive-jaundice[J]. Br J Surg, 1976, 63(10): 774-778.
30
Floch MH, Gershengoren W, Elliott S, et al. Bile acid inhibition of the intestinal microflora-a function for simple bile acids?[J]. Gastroenterology, 1971, 61(2): 228-233.
31
Williams RC, Showalter R, Kern F. In vivo effect of bile salts and cholestyramine on intestinal anaerobic bacteria[J]. Gastroenterology, 1975, 69(2): 483-491.
32
Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor[J]. Proc Natl Acad Sci USA, 2006, 103(10): 3920-3925.
33
Shekels LL, Lyftogt CT, Ho SB. Bile acid-induced alterations of mucin production in differentiated human colon cancer cell lines[J]. Int J Biochem Cell Biol, 1996, 28(2): 193-201.
34
Strauch ED, Yamaguchi J, Bass BL,et al. Bile salts regulate intestinal epithelial cell migration by nuclear factor-kappa B-induced expression of transforming growth factor-beta[J]. J Am Coll Surg, 2003, 197(6): 974-984.
35
Yamaguchi J, Toledo A, Bass BL, et al. Taurodeoxycholate increases intestinal epithelial cell proliferation through c-myc expression[J]. Surgery, 2004, 135(2): 215-221.
36
Bernardes-Silva CF, AOMCDami~ao, Sipahi AM, et al. Ursodeoxycholic acid ameliorates experimental ileitis counteracting intestinal barrier dysfunction and oxidative stress[J]. Dig Dis Sci 2004, 49(10): 1569-1574.
37
Kullmann F, Gross V, Ruschoff J, et al. Effect of ursodeoxycholic acid on the inflammatory activity of indomethacin-induced intestinal inflammation in rats[J]. Z Gastroenterol, 1997, 35(3): 171-178.
38
Uchida A, Yamada T, Hayakawa T, et al. Taurochenodeoxycholic acid ameliorates and ursodeoxycholic acid exacerbates small intestinal inflammation[J]. Am J Physiol, 1997, 272(5 Pt 1): G1249-1257.
39
Cipriani S, Mencarelli A, Bruno A, et al. Activation of the bile acid receptor GPBAR1 protects against gastrointestinal injury caused by nonsteroidal anti-inflammatory drugs and aspirin in mice[J]. Br J Pharmacol 2013, 168(1): 225-237.
40
Fiorucci S, Antonelli E, Distrutti E,et al. Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs[J]. Gastroenterology, 2005, 129(4): 1210-1224.
41
Kong J, Zhang Z, Musch MW, et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(1): G208-216.
42
Makishima M, Lu TT, Xie W, et al. Vitamin D receptor as an intestinal bile acid sensor[J]. Science, 2002, 296(5571): 1313-1316.
43
Fearon ER,Vogelstein B. A genetic model for colorectal tumorigenesis[J]. Cell. Metab, 1990, 61(5): 759-767.
44
Modica S, Murzilli S, Salvatore L, et al. Nuclear bile acid receptor FXR protects against intestinal tumorigenesis[J]. Cancer Res, 2008, 68(23): 9589-9594.
45
Maran RR, Thomas A, Roth M, et al. Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development[J]. J Pharm Exp Ther, 2009, 328(2): 469-477.
46
Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause of colon cancer[J]. World J Surg Oncol, 2014, 12: 164.
47
Payne CM, Bernstein C, Dvorak K, et al. Hydrophobic bile acids, genomic instability, Darwinian selection, and colon carcinogenesis[J]. Clin Exp Gastroenterol, 2008, 1: 19-47.
48
Washo-Stultz D, Crowley-Weber CL, KaterinaDvorakova, et al. Role of mitochondrial complexes I and II, reactive oxygen species and arachidonic acid metabolism in deoxycholate-induced apoptosis[J]. Cancer Lett, 2002, 177(2): 129-144.
49
Ridlon JM, Bajaj JS. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics[J]. Acta Pharm Sin B, 2015, 5(2): 99-105.
50
De Gottardi A, Touri F, Maurer CA, et al. The bile acid nuclear receptor FXR and the bile acid binding protein IBABP are differently expressed in colon cancer[J]. Dig Dis Sci, 2004, 49(6): 982-989.
51
Bailey AM, Zhan L, Maru D, et al. FXR silencing in human colon cancer by DNA methylation and KRAS signaling[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306(1): G48-G58.
52
Lax S, Schauer G, Prein K, et al. Expression of the nuclear bile acid receptor/farnesoid X receptor is reduced in human colon carcinoma compared to nonneoplastic mucosa independent from site and may be associated with adverse prognosis[J]. Int J Cancer, 2012, 130(10): 2232-2239.
53
Torres J, Bao XL, Iuga AC, et al. Farnesoid X receptor expression is decreased in colonic mucosa of patients with primary sclerosing cholangitis and colitis-associated neoplasia[J]. Inflamm Bowel Dis, 2013, 19(2): 275-282.

URL    
[1] 罗青杉, 梅海涛, 郝家领, 蔡锦锋, 周润楷, 温玉刚. 连接蛋白43通过调控细胞周期抑制结直肠癌的增殖机制研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 344-349.
[2] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[3] 谢丽春, 欧庆芬, 张秋萍, 叶升. 简化和标准肝脏MRI方案在结直肠癌肝转移患者随访中的临床应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 434-437.
[4] 施烨鑫, 马翔, 鲁明, 夏青城, 王鹏超, 宋青雨, 赵庆洪. 腹腔镜下结直肠肿瘤定位研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 463-466.
[5] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[6] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[7] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[8] 赵磊, 刘文志, 林峰, 于剑, 孙铭骏, 崔佑刚, 张旭, 衣宇鹏, 于宝胜, 冯宁. 深部热疗在改善结直肠癌术后辅助化疗副反应及生活质量中的作用研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 488-493.
[9] 黄海洋, 邝永龙, 陈嘉胜. 基层医院结直肠肿瘤经自然腔道取标本手术30 例分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 510-518.
[10] 张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.
[11] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
[12] 任佳琪, 刁德昌, 何自衍, 张雪阳, 唐新, 李文娟, 李洪明, 卢新泉, 易小江. 网膜融合线导向的脾曲游离技术在左半结肠癌根治术中的应用[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 362-367.
[13] 张迪, 王春霞, 张学东, 李发馨, 庞淅文, 陈一锋, 张维胜, 王涛. 梗阻性左半结直肠癌自膨式金属支架置入后行腹腔镜手术与开腹手术的短期临床疗效比较[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 375-380.
[14] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[15] 李佳莹, 王旭丹, 梁雪, 张雷, 李佳英. 1990~2021年中国结直肠癌死亡趋势分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 274-279.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?