切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2023, Vol. 12 ›› Issue (05) : 426 -430. doi: 10.3877/cma.j.issn.2095-3224.2023.05.010

综述

结直肠癌转移调控的环状RNA分子机制研究进展
范博洋, 王宁, 张骞, 王贵玉()   
  1. 150086 哈尔滨医科大学附属第二医院结直肠肿瘤外科
    150081 哈尔滨医科大学药学院药学系(国家生物医药药物重点实验室,心血管药物研究教育部重点实验室)
    310000 中国科学院大学附属肿瘤医院(浙江省肿瘤医院)结直肠外科
  • 收稿日期:2022-12-30 出版日期:2023-10-25
  • 通信作者: 王贵玉
  • 基金资助:
    国家自然科学基金(62276084)

The progress in research of molecular mechanism of circRNAs regulating colorectal cancer metastasis

Boyang Fan, Ning Wang, Qian Zhang, Guiyu Wang()   

  1. Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
    Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
    Department of Colorectal Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310000, China
  • Received:2022-12-30 Published:2023-10-25
  • Corresponding author: Guiyu Wang
引用本文:

范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J/OL]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.

Boyang Fan, Ning Wang, Qian Zhang, Guiyu Wang. The progress in research of molecular mechanism of circRNAs regulating colorectal cancer metastasis[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2023, 12(05): 426-430.

结直肠癌是全球癌症致死的第三大病因,其具有高复发率和高转移率的特点,该特性也是结直肠癌预后不良的主要原因。但迄今为止,结直肠癌发生转移的分子调控机制仍不完全清楚。因此,该领域已成为当前国内外研究学者的关注热点。目前研究发现,多种非编码RNA在肿瘤等疾病的发生和发展过程中发挥重要的调控作用。本文通过分析在结直肠癌转移的病理生理过程中,非编码RNA家族成员-环状RNA(circRNAs)的生物学活性及其分子调控机制的最新研究进展,初步建立结直肠癌转移相关信号通路的circRNAs调控网络。进一步分析circRNAs作为新型的结直肠癌诊断和预后生物标志物及治疗靶点的临床应用转化潜力,为临床治疗结直肠癌提供新思路和新靶点。

Colorectal cancer is the third leading cause of cancer deaths worldwide, with its high recurrence and metastasis rates being the main reasons for poor prognosis. Therefore, the regulatory mechanism of colorectal cancer metastasis has become a hot topic of interest for domestic and international researchers. To date, however, the potential regulatory mechanisms of colorectal cancer metastasis remain incompletely understood. Many non-coding genes are involved in tumor invasion and spread, with circular RNAs (circRNAs) being important non-coding RNAs. CircRNAs may be involved in the colorectal carcinogenesis and metastasis. In this review, we systematically analyze the latest research on the role of circRNAs to regulate metastasis-related signaling pathways and the involvement of these circRNAs in colorectal cancer promotion and suppression. The regulatory network of circRNAs in the colorectal metastasis-related signaling pathway has been determined. Further analysis of the potential clinical applications of circRNAs as novel clinical diagnostic and prognostic biomarkers and therapeutic targets for colorectal cancer may provide new ideas and solutions for the prevention and treatment of colorectal cancer.

[1]
Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer[J]. Lancet, 2019, 394(10207): 1467-1480.
[2]
Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology [J]. Cell, 2019, 179(5): 1033-1055.
[3]
Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms [J]. Cell, 2011, 147(2): 275-292.
[4]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation [J]. Cell, 2011, 144(5): 646-674.
[5]
Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications [J]. Cell, 2022, 185(12): 2016-2034.
[6]
Yang L, Wilusz JE, Chen LL. Biogenesis and regulatory roles of circular RNAs [J]. Annu Rev Cell Dev Biol, 2022, 38: 263-289.
[7]
Hlubek F, Brabletz T, Budczies J, et al. Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer [J]. Int J Cancer, 2007, 121(9): 1941-1948.
[8]
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition [J]. Nat Rev Mol Cell Biol, 2014, 15(3): 178-196.
[9]
Zhang J, Wang H, Wu K, et al. Dysregulated circRNA_100876 contributes to proliferation and metastasis of colorectal cancer by targeting microRNA-516b (miR-516b) [J]. Cancer Biol Ther, 2020, 21(8): 733-740.
[10]
Xiao H, Liu M. Circular RNA hsa_circ_0053277 promotes the development of colorectal cancer by upregulating matrix metallopeptidase 14 via miR-2467-3p sequestration [J]. J Cell Physiol, 2020, 235(3): 2881-2890.
[11]
Yang Z, Zhang J, Lu D, et al. Hsa_circ_0137008 suppresses the malignant phenotype in colorectal cancer by acting as a microRNA-338-5p sponge [J]. Cancer Cell Int, 2020, 20: 67.
[12]
Geng Y, Zheng X, Hu W, et al. Hsa_circ_0009361 acts as the sponge of miR-582 to suppress colorectal cancer progression by regulating APC2 expression [J]. Clin Sci (Lond), 2019, 133(10): 1197-1213.
[13]
Yang H, Li X, Meng Q, et al. CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer [J]. Mol Cancer, 2020, 19(1): 13.
[14]
Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch [J]. Nat Rev Cancer, 2003, 3(6): 401-410.
[15]
Zheng X, Ma YF, Zhang XR, et al. Circ_0056618 promoted cell proliferation, migration and angiogenesis through sponging with miR-206 and upregulating CXCR4 and VEGF-A in colorectal cancer [J]. Eur Rev Med Pharmacol Sci, 2020, 24(8): 4190-4202.
[16]
Li W, Xu Y, Wang X, et al. circCCT3 modulates vascular endothelial growth factor a and wnt signaling to enhance colorectal cancer metastasis through sponging miR-613 [J]. DNA Cell Biol, 2020, 39(1): 118-125.
[17]
Fan B, Zhang Q, Wang N, et al. LncRNAs, the molecules involved in communications with colorectal cancer stem cells [J]. Front Oncol, 2022, 12: 811374.
[18]
Zhao H, Chen S, Fu Q. Exosomes from CD133(+) cells carrying circ-ABCC1 mediate cell stemness and metastasis in colorectal cancer [J]. J Cell Biochem, 2020, 121(5-6): 3286-3297.
[19]
Zhang L, Dong X, Yan B, et al. CircAGFG1 drives metastasis and stemness in colorectal cancer by modulating YY1/CTNNB1 [J]. Cell Death Dis, 2020, 11(7): 542.
[20]
Jian X, He H, Zhu J, et al. Hsa_circ_001680 affects the proliferation and migration of CRC and mediates its chemoresistance by regulating BMI1 through miR-340 [J]. Mol Cancer, 2020, 19(1): 20.
[21]
Shen T, Cheng X, Liu X, et al. Circ_0026344 restrains metastasis of human colorectal cancer cells via miR-183 [J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 4038-4045.
[22]
Chen RX, Chen X, Xia LP, et al. N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis [J]. Nat Commun, 2019, 10(1): 4695.
[23]
Weng W, Wei Q, Toden S, et al. Circular RNA ciRS-7-A promising prognostic biomarker and a potential therapeutic target in colorectal cancer [J]. Clin Cancer Res, 2017, 23(14): 3918-3928.
[24]
Kristensen LS, Ebbesen KK, Sokol M, et al. Spatial expression analyses of the putative oncogene ciRS-7 in cancer reshape the microRNA sponge theory [J]. Nat Commun, 2020, 11(1): 4551.
[25]
Lu C, Jiang W, Hui B, et al. The circ_0021977/miR-10b-5p/P21 and P53 regulatory axis suppresses proliferation, migration, and invasion in colorectal cancer [J]. J Cell Physiol, 2020, 235(3): 2273-2285.
[26]
Lu H, Yao B, Wen X, et al. FBXW7 circular RNA regulates proliferation, migration and invasion of colorectal carcinoma through NEK2, mTOR, and PTEN signaling pathways in vitro and in vivo [J]. BMC Cancer, 2019, 19(1): 918.
[27]
Han K, Wang FW, Cao CH, et al. CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17 [J]. Mol Cancer, 2020, 19(1): 60.
[28]
Benson AB, Venook AP, Al-Hawary MM, et al. Colon Cancer, Version 2.2021, NCCN clinical practice guidelines in oncology [J]. J Natl Compr Canc Netw, 2021, 19(3): 329-359.
[29]
Long F, Lin Z, Li L, et al. Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer [J]. Mol Cancer, 2021, 20(1): 26.
[1] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[2] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[3] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[4] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[5] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[6] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[7] 张敏, 朱建华, 缪雅芳, 郭锦荣. 菝葜皂苷元对肝癌HepG2细胞抑制作用的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 328-335.
[8] 刘敏思, 李荣, 李媚. 基于GGT与Plt比值的模型在HBV相关肝细胞癌诊断中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 831-835.
[9] 陆镜明, 韩大为, 任耀星, 黄天笑, 向俊西, 张谞丰, 吕毅, 王傅民. 基于术前影像组学的肝内胆管细胞癌淋巴结转移预测的系统性分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 852-858.
[10] 张润锦, 阳盼, 林燕斯, 刘尊龙, 刘建平, 金小岩. EB病毒相关胆管癌伴多发转移一例及国内文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 865-869.
[11] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[12] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[13] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[14] 赵磊, 刘文志, 林峰, 于剑, 孙铭骏, 崔佑刚, 张旭, 衣宇鹏, 于宝胜, 冯宁. 深部热疗在改善结直肠癌术后辅助化疗副反应及生活质量中的作用研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 488-493.
[15] 黄海洋, 邝永龙, 陈嘉胜. 基层医院结直肠肿瘤经自然腔道取标本手术30 例分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 510-518.
阅读次数
全文


摘要