切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2019, Vol. 08 ›› Issue (05) : 439 -446. doi: 10.3877/cma.j.issn.2095-3224.2019.05.002

所属专题: 文献

专家论坛

免疫组化筛查林奇综合征的缺陷和应对策略
高显华1, 张卫1,(), 白辰光2   
  1. 1. 200433 上海长海医院肛肠外科
    2. 200433 上海长海医院病理科
  • 收稿日期:2018-08-27 出版日期:2019-10-25
  • 通信作者: 张卫
  • 基金资助:
    国家自然科学基金(No.81572332,No.81572358,No.81201936); 上海市市级医院新兴前沿技术联合攻关项目(No.SHDC12016122)

Defects of screening Lynch syndrome by immunohistochemistry and corresponding solution

Xianhua Gao1, Wei Zhang1,(), Chenguang Bai2   

  1. 1. Department of Colorectal Surgery, Changhai Hospital, Shanghai 200433, China
    2. Department of Pathology, Changhai Hospital, Shanghai 200433, China
  • Received:2018-08-27 Published:2019-10-25
  • Corresponding author: Wei Zhang
  • About author:
    Corresponding author: Zhang Wei, Email:
引用本文:

高显华, 张卫, 白辰光. 免疫组化筛查林奇综合征的缺陷和应对策略[J/OL]. 中华结直肠疾病电子杂志, 2019, 08(05): 439-446.

Xianhua Gao, Wei Zhang, Chenguang Bai. Defects of screening Lynch syndrome by immunohistochemistry and corresponding solution[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2019, 08(05): 439-446.

林奇综合征(LS)是由于错配修复基因(MLH1、MSH2、MSH6、PMS2)的胚系突变引起的,是最常见的遗传性结直肠癌综合征,约占所有结直肠癌的3%。目前,多个权威国际组织建议对所有初诊的结直肠癌患者进行LS的普查。LS的普查方法包括免疫组化(IHC)检测错配修复蛋白缺陷(dMMR)和微卫星不稳定性(MSI)检测两种。IHC由于具有检测费用低、对检测设备的要求低、便于基层医院开展、可以提示突变基因等优点,成为LS筛查的首选。但是,由于组织固定、抗体质量、IHC染色技术问题以及不寻常的染色模式,IHC结果容易出现各种误读。干扰IHC结果解读的因素包括:肿瘤细胞的胞浆染色、内对照细胞染色弱、肿瘤细胞的异质性、特殊的病理形态表现(如:淋巴细胞浸润肿瘤上皮,印戒细胞癌)、新辅助放化疗等。注意避免IHC结果解读的各种陷阱,对于准确识别LS至关重要,有助于节省患者和亲属的监测费用,并避免不必要的焦虑。同时,由于采用IHC进行LS的普查本身还存在一些固有缺陷,所以不能将IHC作为LS的唯一筛查手段,应综合应用各种筛查标准、IHC、MSI、BRAF V600E突变、MLH1启动子甲基化和基因的胚系突变检测,以便对LS做出准确的诊断。

Lynch syndrome (LS), which is caused by germline mutations in mismatch repair genes (MLH1, MSH2, MSH6, PMS2), is the most common hereditary colorectal cancer syndrome, accounting for approximately 3% of all colorectal cancers. Recently, several authoritative international organizations recommend universal screening of LS for all newly diagnosed colorectal cancers. Universal screening of LS can be performed by immunohistochemistry (IHC) to identify deficient mismatch repair (dMMR) or by microsatellite instability (MSI) test. IHC has become the first choice for LS screening, due to its low detection cost, low requirements for testing equipment, availability in primary hospitals, and indication of potential mutant genes. However, due to the interference of impropriate tissue fixation, poor antibody quality, unskilled IHC staining techniques and unusual staining patterns, sometimes it is difficult to make a correct interpretation of IHC results. Influencing factors of interpreting IHC results include: cytoplasmic staining of tumor cell, weak staining of internal control cells, heterogeneity of tumor cells, special pathological manifestations (such as lymphocytic infiltration of tumor epithelium, signet ring cell carcinoma) and neoadjuvant chemoradiation. Avoiding the defects of IHC interpretation is critical to identify LS accurately, to reduce monitoring costs of the LS patients and their family members, and to avoid unnecessary anxiety for sporadic colorectal cancer patients. At the same time, due to its inherent defects in LS screening, IHC should not be used as the only method for LS screening. All currently available methods, including various screening standards, IHC, MSI, BRAF V600E mutation, MLH1 promoter methylation and germline gene mutation detection, should be comprehensively applied to make an accurate diagnosis of LS.

表1 免疫组化检测dMMR的常见表现形式和原因11
表2 免疫组化检测dMMR的罕见表现形式和解释11
表3 免疫组化检测dMMR筛查LS:检测样本的缺陷11
表4 免疫组化检测dMMR筛查LS:结果误读的原因和解决办法11
[1]
Mvundura M, Grosse SD, Hampel H, et al. The cost-effectiveness of genetic testing strategies for Lynch syndrome among newly diagnosed patients with colorectal cancer [J]. Genet Med, 2010, 12(2): 93-104.
[2]
Musulen E, Sanz C, Munoz-Marmol AM, et al. Mismatch repair protein immunohistochemistry: a useful population screening strategy for Lynch syndrome [J]. Hum Pathol, 2014, 45(7): 1388-1396.
[3]
Kastrinos F, Uno H, Ukaegbu C, et al. Development and validation of the PREMM5 model for comprehensive risk assessment of Lynch syndrome [J]. J Clin Oncol, 2017, 35(19): 2165-2172.
[4]
Hampel H. NCCN increases the emphasis on genetic/familial high-risk assessment in colorectal cancer [J]. J Natl Compr Canc Netw, 2014, 12(5 Suppl): 829-831.
[5]
Syngal S, Brand RE, Church JM, et al. ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes [J]. Am J Gastroenterol, 2015, 110(2): 223-262.
[6]
Stoffel EM, Mangu PB, Gruber SB, et al. Hereditary colorectal cancer syndromes: American society of clinical oncology clinical practice guideline endorsement of the familial risk-colorectal cancer: European society for medical oncology clinical practice guidelines [J]. J Clin Oncol, 2015, 33(2): 209-217.
[7]
Evaluation of Genomic Applications in Practice and Prevention Working Group. Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives [J]. Genet Med, 2009, 11(1): 35-41.
[8]
Giardiello FM, Allen JI, Axilbund JE, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-society Task Force on colorectal cancer [J]. Am J Gastroenterol, 2014, 109(8): 1159-1179.
[9]
Vasen HF, Blanco I, Aktan-Collan K, et al. Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts [J]. Gut, 2013, 62(6): 812-823.
[10]
Bartley AN, Hamilton SR, Alsabeh R, et al. Template for reporting results of biomarker testing of specimens from patients with carcinoma of the colon and rectum [J]. Arch Pathol Lab Med, 2014, 138(2): 166-170.
[11]
Markow M, Chen W, Frankel WL. Immunohistochemical pitfalls: Common mistakes in the evaluation of Lynch syndrome [J]. Surg Pathol Clin, 2017, 10(4): 977-1007.
[12]
Mihaylova VT, Bindra RS, Yuan J, et al. Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells [J]. Mol Cell Biol, 2003, 23(9): 3265-3273.
[13]
Mills AM, Longacre TA. Lynch syndrome: Female genital tract cancer diagnosis and screening [J]. Surg Pathol Clin, 2016, 9(2): 201-214.
[14]
Rodriguez-Soler M, Perez-Carbonell L, Guarinos C, et al. Risk of cancer in cases of suspected lynch syndrome without germline mutation [J]. Gastroenterology, 2013, 144(5): 926-932.
[15]
Pai RK, Pai RK. A practical approach to the evaluation of gastrointestinal tract carcinomas for Lynch syndrome [J]. Am J Surg Pathol, 2016, 40(4): e17-34.
[16]
Geurts-Giele WR, Leenen CH, Dubbink HJ, et al. Somatic aberrations of mismatch repair genes as a cause of microsatellite-unstable cancers [J]. J Pathol, 2014, 234(4): 548-559.
[17]
Haraldsdottir S, Hampel H, Tomsic J, et al. Colon and endometrial cancers with mismatch repair deficiency can arise from somatic, rather than germline, mutations [J]. Gastroenterology, 2014, 147(6): 1308-1316 e1301.
[18]
Morak M, Heidenreich B, Keller G, et al. Biallelic MUTYH mutations can mimic Lynch syndrome [J]. Eur J Hum Genet, 2014, 22(11): 1334-1337.
[19]
Sourrouille I, Coulet F, Lefevre JH, et al. Somatic mosaicism and double somatic hits can lead to MSI colorectal tumors [J]. Fam Cancer, 2013, 12(1): 27-33.
[20]
Ward RL, Dobbins T, Lindor NM, et al. Identification of constitutional MLH1 epimutations and promoter variants in colorectal cancer patients from the Colon Cancer Family Registry [J]. Genet Med, 2013, 15(1): 25-35.
[21]
Sekine S, Ogawa R, Saito S, et al. Cytoplasmic MSH2 immunoreactivity in a patient with Lynch syndrome with an EPCAM-MSH2 fusion [J]. Histopathology, 2017, 70(4): 664-669.
[22]
Graham RP, Kerr SE, Butz ML, et al. Heterogenous MSH6 loss is a result of microsatellite instability within MSH6 and occurs in sporadic and hereditary colorectal and endometrial carcinomas [J]. Am J Surg Pathol, 2015, 39(10): 1370-1376.
[23]
Kumarasinghe AP, de Boer B, Bateman AC, et al. DNA mismatch repair enzyme immunohistochemistry in colorectal cancer: a comparison of biopsy and resection material [J]. Pathology, 2010, 42(5): 414-420.
[24]
Bao F, Panarelli NC, Rennert H, et al. Neoadjuvant therapy induces loss of MSH6 expression in colorectal carcinoma [J]. Am J Surg Pathol, 2010, 34(12): 1798-1804.
[25]
Radu OM, Nikiforova MN, Farkas LM, et al. Challenging cases encountered in colorectal cancer screening for Lynch syndrome reveal novel findings: nucleolar MSH6 staining and impact of prior chemoradiation therapy [J]. Hum Pathol, 2011, 42(9): 1247-1258.
[26]
Vilkin A, Halpern M, Morgenstern S, et al. How reliable is immunohistochemical staining for DNA mismatch repair proteins performed after neoadjuvant chemoradiation? [J]. Hum Pathol, 2014, 45(10): 2029-2036.
[27]
Hagen CE, Lefferts J, Hornick JL, et al. ″Null pattern″ of immunoreactivity in a Lynch syndrome-associated colon cancer due to germline MSH2 mutation and somatic MLH1 hypermethylation [J]. Am J Surg Pathol, 2011, 35(12): 1902-1905.
[28]
Shia J, Zhang L, Shike M, et al. Secondary mutation in a coding mononucleotide tract in MSH6 causes loss of immunoexpression of MSH6 in colorectal carcinomas with MLH1/PMS2 deficiency [J]. Mod Pathol, 2013, 26(1): 131-138.
[29]
Halvarsson B, Lindblom A, Johansson L, et al. Loss of mismatch repair protein immunostaining in colorectal adenomas from patients with hereditary nonpolyposis colorectal cancer [J]. Mod Pathol, 2005, 18(8): 1095-1101.
[30]
Kalady MF, Kravochuck SE, Heald B, et al. Defining the adenoma burden in lynch syndrome [J]. Dis Colon Rectum, 2015, 58(4): 388-392.
[31]
Walsh MD, Buchanan DD, Pearson SA, et al. Immunohistochemical testing of conventional adenomas for loss of expression of mismatch repair proteins in Lynch syndrome mutation carriers: a case series from the Australasian site of the colon cancer family registry [J]. Mod Pathol, 2012, 25(5): 722-730.
[32]
Bae JM, Kim JH, Kang GH. Molecular subtypes of colorectal cancer and their clinicopathologic features, with an emphasis on the serrated neoplasia pathway [J]. Arch Pathol Lab Med, 2016, 140(5): 406-412.
[33]
Bodo S, Colas C, Buhard O, et al. Diagnosis of constitutional mismatch repair-Deficiency syndrome based on microsatellite instability and lymphocyte tolerance to methylating agents [J]. Gastroenterology, 2015, 149(4): 1017-1029.
[1] 顾莉莉, 姜凡. 安徽省超声产前筛查切面图像质量现状调查情况及分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 671-674.
[2] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[3] 钱警语, 郑明明. 《2024意大利妇产科学会非侵入性和侵入性产前诊断指南》解读[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 486-492.
[4] 罗青杉, 梅海涛, 郝家领, 蔡锦锋, 周润楷, 温玉刚. 连接蛋白43通过调控细胞周期抑制结直肠癌的增殖机制研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 344-349.
[5] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[6] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[7] 赵磊, 刘文志, 林峰, 于剑, 孙铭骏, 崔佑刚, 张旭, 衣宇鹏, 于宝胜, 冯宁. 深部热疗在改善结直肠癌术后辅助化疗副反应及生活质量中的作用研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 488-493.
[8] 黄海洋, 邝永龙, 陈嘉胜. 基层医院结直肠肿瘤经自然腔道取标本手术30 例分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 510-518.
[9] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[10] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[11] 张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.
[12] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
[13] 任佳琪, 刁德昌, 何自衍, 张雪阳, 唐新, 李文娟, 李洪明, 卢新泉, 易小江. 网膜融合线导向的脾曲游离技术在左半结肠癌根治术中的应用[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 362-367.
[14] 张迪, 王春霞, 张学东, 李发馨, 庞淅文, 陈一锋, 张维胜, 王涛. 梗阻性左半结直肠癌自膨式金属支架置入后行腹腔镜手术与开腹手术的短期临床疗效比较[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 375-380.
[15] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?