切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2018, Vol. 07 ›› Issue (06) : 538 -545. doi: 10.3877/cma.j.issn.2095-3224.2018.06.007

所属专题: 文献

论著

姜黄素干预小鼠肠道菌群并抑制结直肠癌变的实验研究
陈文杰1, 苏献豪1, 王跃迁1, 王会鹏1, 叶桃1, 陈骏1, 赵加应1, 蔡元坤1,()   
  1. 1. 200240 上海,复旦大学附属上海市第五人民医院普外科
  • 收稿日期:2018-06-25 出版日期:2018-12-25
  • 通信作者: 蔡元坤
  • 基金资助:
    上海市闵行区卫计委基金(No.2013MW11)

Structural shift of gut microbiota during chemo-preventive effects of curcumin on colorectal carcinogenesis in mice

Wenjie Chen1, Xianhao Su1, Yueqian Wang1, Huipeng Wang1, Tao Ye1, Jun Chen1, Jiaying Zhao1, Yuankun Cai1,()   

  1. 1. The Department of General Surgery, The 5th People′s Hospital of Shanghai, Fudan University, Shanghai 200240, China
  • Received:2018-06-25 Published:2018-12-25
  • Corresponding author: Yuankun Cai
  • About author:
    Corresponding author: Cai Yuankun, Email:
引用本文:

陈文杰, 苏献豪, 王跃迁, 王会鹏, 叶桃, 陈骏, 赵加应, 蔡元坤. 姜黄素干预小鼠肠道菌群并抑制结直肠癌变的实验研究[J]. 中华结直肠疾病电子杂志, 2018, 07(06): 538-545.

Wenjie Chen, Xianhao Su, Yueqian Wang, Huipeng Wang, Tao Ye, Jun Chen, Jiaying Zhao, Yuankun Cai. Structural shift of gut microbiota during chemo-preventive effects of curcumin on colorectal carcinogenesis in mice[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2018, 07(06): 538-545.

目的

拟通过监测姜黄素干预小鼠肠癌发生发展过程中肠道菌群的变化,探究姜黄素对小鼠肠道菌群的影响,以及可能的抗癌作用机制及作用靶点。

方法

将25只6周龄C57BL/6小鼠随机分为基础饮食组(BD)5只,AOM/DSS造模组(MO)10只,姜黄素干预造模组(CU)10只,分别于实验前和处死前收集小鼠粪便进行DNA提取及高通量菌群测序。

结果

T1点时(干预前)各组小鼠肠道菌群的多样性指数差异无统计学意义,T2点时(干预后)MO组的多样性指数更高,高于其他2组,与BD组差异有统计学意义(t=2.73,P=0.02),而与CU组比较差异无统计学意义。T2点时各组的多样性指数均较T1点时明显升高,其中CU组与BD在T2点时多样性指数更接近,均小于造模组。造模前后菌群在属水平发生了较大变化,CU组较MO组肠道菌群变化要小,而且拟杆菌类和疣微菌门较MO组变化较大。MO小鼠体重增量平均要少于CU组,CU组小鼠结直肠肿瘤的成瘤数量、瘤体体积,明显少于MO组。

结论

在小鼠结直肠癌发生过程中,姜黄素能够维持小鼠肠道菌群的稳定性,降低了小鼠肠道肿瘤发生率,可能为抑制结直肠癌发生发展的机制之一。

Objective

To explore the effect of curcumin on intestinal flora in mice, as well as anti-cancer mechanisms and targets by monitoring the changes of intestinal flora during the development of colorectal cancer in mice.

Methods

Twenty-five 6-week-old C57BL/6 mice were randomly divided into basic diet group (BD) with 5, AOM/DSS model group (MO) with 10, and curcumin intervention model group (CU) with 10. DNA extraction and high-throughput microbiota sequencing were carried out before the experiment and before the execution.

Results

There was no significant difference in the diversity index of mice in each group at point T1 (before intervention), and the diversity index of MO group at point T2 (after intervention) was higher than that of the other 2 groups, with a significant difference from BD group (t=2.73, P=0.02) and no significant difference from CU group. The diversity index of each group at T2 was significantly higher than that at T1, in which the diversity index of CU group and BD group were more similar at T2, and were all smaller than the MO group. Before and after the molds were made, the flora of the genus changed greatly, and the intestinal flora of the CU group changed less than that of the MO group, especially the Bacteroidetes and Verrucomicrobia. The average weight increment of MO mice was lower than that of CU group, and the number of tumor formation and tumor volume of colorectal tumors in CU group were significantly lower than that of MO group.

Conclusion

Curcumin can maintain the stability of intestinal flora and reduce the incidence of intestinal tumor in mice during the occurrence of colorectal cancer, which indicating that it is possible one of the mechanisms to inhibit the occurrence and development of colorectal cancer.

图1 小鼠体重增长图
图2 造模组及姜黄素组成瘤图片
图3 成瘤数目及载瘤负荷图
图4 序列长度分布图
图5 稀释曲线及丰度分布曲线图
表1 T1点(干预前)Alpha多样性指数表
表2 T2点(干预后)Alpha多样性指数表
图6 门水平小鼠肠道菌群柱状图
图7 各组门水平小鼠肠道菌群差异图。7A:BD组干预前后门水平菌群差异;7B:CU组干预前后门水平菌群差异;7C:MO组干预前后门水平菌群差异;7D:CU组与MO组干预后门水平菌群差异
图8 各组属水平小鼠肠道菌群差异图。8A:MO组干预前后属水平菌群差异;8B:CU组干预前后属水平菌群差异;8C:CU组与MO组干预后属水平菌群差异
[1]
Brenner H, Kloor M, Pox CP. Colorectal cancer [J]. Lancet, 2014, 383(9927): 1490-1502.
[2]
Qin N, Yang F, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis [J]. Nature, 2014, 513(7516): 59-64.
[3]
Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance [J]. Mol Aspects Med, 2013, 34(1): 39-58.
[4]
Wang M, Karlsson C, Olsson C, et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema [J]. J Allergy Clin Immunol, 2008, 121(1): 129-134.
[5]
Sears CL, Garrett WS. Microbes, microbiota, and colon cancer [J]. Cell Host Microbe, 2014, 15(3): 317-328.
[6]
Goel A, Kunnumakkara AB, Aggarwal BB. CUrCUmin as ″CUreCUmin″: from kitchen to clinic [J]. Biochem Pharmacol, 2008, 75(4): 787-809.
[7]
Neufert C, Becker C, Neurath MF. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression [J]. Nat Protoc, 2007, 2(8): 1998-2004.
[8]
Cheifetz AS, Gianotti R, Luber R, et al. Complementary and alternative medicines used by patients with inflammatory bowel diseases [J]. Gastroenterology, 2017, 152(2): 415-429.e15.
[9]
DuPont AW, DuPont HL. The intestinal microbiota and chronic disorders of the gut [J]. Nat Rev Gastroenterol Hepatol, 2011, 8(9): 523-531.
[10]
Tlaskalová-Hogenová H, Stěpánková R, Kozáková H, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases [J]. Cell Mol Immunol, 2011, 8(2): 110-120.
[11]
Zhang Z, Wu X, Cao S, et al. Caffeic acid ameliorates colitis in association with increased Akkermansia population in the gut microbiota of mice [J]. Oncotarget, 2016, 7(22): 31790-31799.
[12]
Huipeng W, Lifeng G, Chuang G, et al. The differences in colonic mucosal microbiota between normal individual and colon cancer patients by polymerase chain reaction-denaturing gradient gel electrophoresis [J]. J Clin Gastroenterol, 2014, 48(2): 138-144.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[5] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[6] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[7] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[8] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[9] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[10] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[11] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[12] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[13] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[14] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[15] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
阅读次数
全文


摘要