切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2018, Vol. 07 ›› Issue (06) : 538 -545. doi: 10.3877/cma.j.issn.2095-3224.2018.06.007

所属专题: 文献

论著

姜黄素干预小鼠肠道菌群并抑制结直肠癌变的实验研究
陈文杰1, 苏献豪1, 王跃迁1, 王会鹏1, 叶桃1, 陈骏1, 赵加应1, 蔡元坤1,()   
  1. 1. 200240 上海,复旦大学附属上海市第五人民医院普外科
  • 收稿日期:2018-06-25 出版日期:2018-12-25
  • 通信作者: 蔡元坤
  • 基金资助:
    上海市闵行区卫计委基金(No.2013MW11)

Structural shift of gut microbiota during chemo-preventive effects of curcumin on colorectal carcinogenesis in mice

Wenjie Chen1, Xianhao Su1, Yueqian Wang1, Huipeng Wang1, Tao Ye1, Jun Chen1, Jiaying Zhao1, Yuankun Cai1,()   

  1. 1. The Department of General Surgery, The 5th People′s Hospital of Shanghai, Fudan University, Shanghai 200240, China
  • Received:2018-06-25 Published:2018-12-25
  • Corresponding author: Yuankun Cai
  • About author:
    Corresponding author: Cai Yuankun, Email:
引用本文:

陈文杰, 苏献豪, 王跃迁, 王会鹏, 叶桃, 陈骏, 赵加应, 蔡元坤. 姜黄素干预小鼠肠道菌群并抑制结直肠癌变的实验研究[J/OL]. 中华结直肠疾病电子杂志, 2018, 07(06): 538-545.

Wenjie Chen, Xianhao Su, Yueqian Wang, Huipeng Wang, Tao Ye, Jun Chen, Jiaying Zhao, Yuankun Cai. Structural shift of gut microbiota during chemo-preventive effects of curcumin on colorectal carcinogenesis in mice[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2018, 07(06): 538-545.

目的

拟通过监测姜黄素干预小鼠肠癌发生发展过程中肠道菌群的变化,探究姜黄素对小鼠肠道菌群的影响,以及可能的抗癌作用机制及作用靶点。

方法

将25只6周龄C57BL/6小鼠随机分为基础饮食组(BD)5只,AOM/DSS造模组(MO)10只,姜黄素干预造模组(CU)10只,分别于实验前和处死前收集小鼠粪便进行DNA提取及高通量菌群测序。

结果

T1点时(干预前)各组小鼠肠道菌群的多样性指数差异无统计学意义,T2点时(干预后)MO组的多样性指数更高,高于其他2组,与BD组差异有统计学意义(t=2.73,P=0.02),而与CU组比较差异无统计学意义。T2点时各组的多样性指数均较T1点时明显升高,其中CU组与BD在T2点时多样性指数更接近,均小于造模组。造模前后菌群在属水平发生了较大变化,CU组较MO组肠道菌群变化要小,而且拟杆菌类和疣微菌门较MO组变化较大。MO小鼠体重增量平均要少于CU组,CU组小鼠结直肠肿瘤的成瘤数量、瘤体体积,明显少于MO组。

结论

在小鼠结直肠癌发生过程中,姜黄素能够维持小鼠肠道菌群的稳定性,降低了小鼠肠道肿瘤发生率,可能为抑制结直肠癌发生发展的机制之一。

Objective

To explore the effect of curcumin on intestinal flora in mice, as well as anti-cancer mechanisms and targets by monitoring the changes of intestinal flora during the development of colorectal cancer in mice.

Methods

Twenty-five 6-week-old C57BL/6 mice were randomly divided into basic diet group (BD) with 5, AOM/DSS model group (MO) with 10, and curcumin intervention model group (CU) with 10. DNA extraction and high-throughput microbiota sequencing were carried out before the experiment and before the execution.

Results

There was no significant difference in the diversity index of mice in each group at point T1 (before intervention), and the diversity index of MO group at point T2 (after intervention) was higher than that of the other 2 groups, with a significant difference from BD group (t=2.73, P=0.02) and no significant difference from CU group. The diversity index of each group at T2 was significantly higher than that at T1, in which the diversity index of CU group and BD group were more similar at T2, and were all smaller than the MO group. Before and after the molds were made, the flora of the genus changed greatly, and the intestinal flora of the CU group changed less than that of the MO group, especially the Bacteroidetes and Verrucomicrobia. The average weight increment of MO mice was lower than that of CU group, and the number of tumor formation and tumor volume of colorectal tumors in CU group were significantly lower than that of MO group.

Conclusion

Curcumin can maintain the stability of intestinal flora and reduce the incidence of intestinal tumor in mice during the occurrence of colorectal cancer, which indicating that it is possible one of the mechanisms to inhibit the occurrence and development of colorectal cancer.

图1 小鼠体重增长图
图2 造模组及姜黄素组成瘤图片
图3 成瘤数目及载瘤负荷图
图4 序列长度分布图
图5 稀释曲线及丰度分布曲线图
表1 T1点(干预前)Alpha多样性指数表
表2 T2点(干预后)Alpha多样性指数表
图6 门水平小鼠肠道菌群柱状图
图7 各组门水平小鼠肠道菌群差异图。7A:BD组干预前后门水平菌群差异;7B:CU组干预前后门水平菌群差异;7C:MO组干预前后门水平菌群差异;7D:CU组与MO组干预后门水平菌群差异
图8 各组属水平小鼠肠道菌群差异图。8A:MO组干预前后属水平菌群差异;8B:CU组干预前后属水平菌群差异;8C:CU组与MO组干预后属水平菌群差异
[1]
Brenner H, Kloor M, Pox CP. Colorectal cancer [J]. Lancet, 2014, 383(9927): 1490-1502.
[2]
Qin N, Yang F, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis [J]. Nature, 2014, 513(7516): 59-64.
[3]
Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance [J]. Mol Aspects Med, 2013, 34(1): 39-58.
[4]
Wang M, Karlsson C, Olsson C, et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema [J]. J Allergy Clin Immunol, 2008, 121(1): 129-134.
[5]
Sears CL, Garrett WS. Microbes, microbiota, and colon cancer [J]. Cell Host Microbe, 2014, 15(3): 317-328.
[6]
Goel A, Kunnumakkara AB, Aggarwal BB. CUrCUmin as ″CUreCUmin″: from kitchen to clinic [J]. Biochem Pharmacol, 2008, 75(4): 787-809.
[7]
Neufert C, Becker C, Neurath MF. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression [J]. Nat Protoc, 2007, 2(8): 1998-2004.
[8]
Cheifetz AS, Gianotti R, Luber R, et al. Complementary and alternative medicines used by patients with inflammatory bowel diseases [J]. Gastroenterology, 2017, 152(2): 415-429.e15.
[9]
DuPont AW, DuPont HL. The intestinal microbiota and chronic disorders of the gut [J]. Nat Rev Gastroenterol Hepatol, 2011, 8(9): 523-531.
[10]
Tlaskalová-Hogenová H, Stěpánková R, Kozáková H, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases [J]. Cell Mol Immunol, 2011, 8(2): 110-120.
[11]
Zhang Z, Wu X, Cao S, et al. Caffeic acid ameliorates colitis in association with increased Akkermansia population in the gut microbiota of mice [J]. Oncotarget, 2016, 7(22): 31790-31799.
[12]
Huipeng W, Lifeng G, Chuang G, et al. The differences in colonic mucosal microbiota between normal individual and colon cancer patients by polymerase chain reaction-denaturing gradient gel electrophoresis [J]. J Clin Gastroenterol, 2014, 48(2): 138-144.
[1] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[2] 罗青杉, 梅海涛, 郝家领, 蔡锦锋, 周润楷, 温玉刚. 连接蛋白43通过调控细胞周期抑制结直肠癌的增殖机制研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 344-349.
[3] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[4] 李玲, 刘亚, 李培玲, 张秀敏, 李萍. 直肠癌患者术后肠道菌群的变化与抑郁症相关性研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 607-610.
[5] 方道成, 唐春华, 胡媛媛. 肠道菌群对草酸钙肾结石形成的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 509-513.
[6] 于燕兴, 梅喜庆, 刘凤娟, 于梓薇, 许亚慧, 徐飞. 高通量测序重症肺炎肺泡灌洗液病原体的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 785-788.
[7] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[8] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[9] 赵磊, 刘文志, 林峰, 于剑, 孙铭骏, 崔佑刚, 张旭, 衣宇鹏, 于宝胜, 冯宁. 深部热疗在改善结直肠癌术后辅助化疗副反应及生活质量中的作用研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 488-493.
[10] 黄海洋, 邝永龙, 陈嘉胜. 基层医院结直肠肿瘤经自然腔道取标本手术30 例分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 510-518.
[11] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[12] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[13] 张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.
[14] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
[15] 宋燕秋, 戚桂艳, 杨双双, 周萍. 重症急性胰腺炎肠道菌群特征及早期肠内营养联合微生态制剂治疗的临床价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 442-447.
阅读次数
全文


摘要