[1] |
Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis [J]. Cell, 1990, 61(5):759-767.
|
[2] |
Fearon ER. Molecular genetics of colorectal cancer [J]. Annu Rev Pathol, 2011, 6(1):479-507.
|
[3] |
Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer [J]. Nature, 2012, 487(7407):330-337.
|
[4] |
Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett′s epithelium [J]. Gastroenterology, 2011, 141(5):1762-1772.
|
[5] |
Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids [J]. Nat Med, 2015, 21(3):256-262.
|
[6] |
Singh R, Zorron Cheng, Koay D, et al. Sessile serrated adenoma/polyps: Where are we at in 2016? [J]. World J Gastroenterol, 2016, 22(34):7754-7759.
|
[7] |
Strum WB. Colorectal Adenomas [J]. N Engl J Med, 2016, 374(11):1065-1075.
|
[8] |
Sakamoto N, Feng Y, Stolfi C, et al. BRAFV600E cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis [J]. Elife, 2017, 6:e20331.
|
[9] |
Kedrin D, Gala MK. Genetics of the serrated pathway to colorectal cancer [J]. Clin Transl Gastroenterol, 2015, 6(4):e84.
|
[10] |
Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers [J]. Nucleic Acids Res, 1989, 17(16):6463-6471.
|
[11] |
Peinado MA, Malkhosyan S, Velazquez A, et al. Isolation and characterization of allelic losses and gains in colorectal tumors by arbitrarily primed polymerase chain reaction [J]. Proc Natl Acad Sci USA, 1992, 89(21):10065-10069.
|
[12] |
Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon [J]. Science, 1993, 260(5109):816-819.
|
[13] |
Peltomaki P, Aaltonen LA, Sistonen P, et al. Genetic mapping of a locus predisposing to human colorectal cancer [J]. Science, 1993, 260(5109):810-812.
|
[14] |
Fishel R, Lescoe MK, Rao MR, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer [J]. Cell, 1993, 75(5):1027-1038.
|
[15] |
Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes [J]. Science, 2013, 339(6127):1546-1558.
|
[16] |
Muller MF, Ibrahim AE, Arends MJ. Molecular pathological classification of colorectal cancer [J]. Virchows Arch, 2016, 469(2):125-134.
|
[17] |
Gatalica Z, Vranic S, Xiu J, et al. High microsatellite instability (MSI-H) colorectal carcinoma: a brief review of predictive biomarkers in the era of personalized medicine [J]. Fam Cancer, 2016, 15(3):405-412.
|
[18] |
Briggs S, Tomlinson I. Germline and somatic polymerase epsilon and delta mutations define a new class of hypermutated colorectal and endometrial cancers [J]. J Pathol, 2013, 230(2):148-153.
|
[19] |
Boland CR, Goel A. Microsatellite instability in colorectal cancer [J]. Gastroenterology, 2010, 138(6):2073-2087.
|
[20] |
Peltomaki P. Lynch syndrome genes [J]. Fam Cancer, 2005, 4(3):227-232.
|
[21] |
Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers [J]. Nature, 1998, 396(6712):643-649.
|
[22] |
Pino MS, Chung DC. The chromosomal instability pathway in colon cancer [J]. Gastroenterology, 2010, 138(6):2059-2072.
|
[23] |
Thompson SL, Bakhoum SF, Compton DA. Mechanisms of chromosomal instability [J]. Curr Biol, 2010, 20(6):R285-295.
|
[24] |
Cardoso J, Molenaar L, de Menezes RX, et al. Chromosomal instability in MYH- and APC-mutant adenomatous polyps [J]. Cancer Res, 2006, 66(5):2514-2519.
|
[25] |
Arber N, Eagle CJ, Spicak J, et al. Celecoxib for the prevention of colorectal adenomatous polyps [J]. N Engl J Med, 2006, 355(9):885-895.
|
[26] |
Bertagnolli MM, Eagle CJ, Zauber AG, et al. Celecoxib for the prevention of sporadic colorectal adenomas [J]. N Engl J Med, 2006, 355(9):873-884.
|
[27] |
Arber N, Spicak J, Racz I, et al. Five-year analysis of the prevention of colorectal sporadic adenomatous polyps trial [J]. Am J Gastroenterol, 2011, 106(6):1135-1146.
|
[28] |
Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer [J]. Proc Natl Acad Sci USA, 1999, 96(15):8681-8686.
|
[29] |
Nazemalhosseini Mojarad E, Kuppen PJ, Aghdaei HA, et al. The CpG island methylator phenotype (CIMP) in colorectal cancer [J]. Gastroenterol Hepatol Bed Bench, 2013, 6(3):120-128.
|
[30] |
Zong L, Abe M, Ji J, et al. Tracking the correlation between CpG island methylator phenotype and other molecular features and clinicopathological features in human colorectal cancers: a systematic review and meta-analysis[J]. Clin Transl Gastroenterol, 2016, 7(3):e151.
|
[31] |
Kocarnik JM, Shiovitz S, Phipps AI. Molecular phenotypes of colorectal cancer and potential clinical applications [J]. Gastroenterol Rep (Oxf), 2015, 3(4):269-276.
|
[32] |
Jia M, Jansen L, Walter V, et al. No association of CpG island methylator phenotype and colorectal cancer survival: population-based study [J]. Br J Cancer, 2016, 115(11):1359-1366.
|
[33] |
Shen L, Toyota M, Kondo Y, et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer [J]. Proc Natl Acad Sci US A, 2007, 104(47):18654-18659.
|
[34] |
Sinicrope FA, Rego RL, Halling KC, et al. Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients [J]. Gastroenterology, 2006, 131(3):729-737.
|
[35] |
Cheng YW, Pincas H, Bacolod MD, et al. CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer [J]. Clin Cancer Res, 2008, 14(19):6005-6013.
|
[36] |
Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features [J]. Histopathology, 2007, 50(1):113-130.
|
[37] |
Schlicker A, Beran G, Chresta CM, et al. Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines [J]. BMC Med Genomics, 2012, 5:66.
|
[38] |
Perez-Villamil B, Romera-Lopez A, Hernandez-Prieto S, et al. Colon cancer molecular subtypes identified by expression profiling and associated to stroma, mucinous type and different clinical behavior [J]. BMC Cancer, 2012, 12:260.
|
[39] |
De Sousa EMF, Wang X, Jansen M, et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions [J]. Nat Med, 2013, 19(5):614-618.
|
[40] |
Budinska E, Popovici V, Tejpar S, et al. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer [J]. J Pathol, 2013, 231(1):63-76.
|
[41] |
Marisa L, de Reynies A, Duval A, et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value [J]. PLoS Med, 2013, 10(5):e1001453.
|
[42] |
Sadanandam A, Lyssiotis CA, Homicsko K, et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy [J]. Nat Med, 2013, 19(5):619-625.
|
[43] |
Roepman P, Schlicker A, Tabernero J, et al. Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition [J]. Int J Cancer, 2014, 134(3):552-562.
|
[44] |
Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer [J]. Nat Med, 2015, 21(11):1350-1356.
|
[45] |
Dienstmann R, Vermeulen L, Guinney J, et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer [J]. Nat Rev Cancer, 2017, 17(2):79-92.
|
[46] |
Fessler E, Drost J, van Hooff SR, et al. TGFbeta signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype [J]. EMBO Mol Med, 2016, 8(7):745-760.
|
[47] |
Zhang B, Wang J, Wang X, et al. Proteogenomic characterization of human colon and rectal cancer [J]. Nature, 2014, 513(7518):382-387.
|
[48] |
Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer [J]. N Engl J Med, 2004, 350(23):2335-2342.
|
[49] |
Van Cutsem E, Kohne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer [J]. N Engl J Med, 2009, 360(14):1408-1417.
|
[50] |
Douillard JY, Siena S, Cassidy J, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study [J]. J Clin Oncol, 2010, 28(31):4697-4705.
|
[51] |
Kopetz S, Desai J, Chan E, et al. Phase II Pilot Study of Vemurafenib in Patients With Metastatic BRAF-Mutated Colorectal Cancer [J]. J Clin Oncol, 2015, 33(34):4032-4038.
|
[52] |
Zimmer L, Barlesi F, Martinez-Garcia M, et al. Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RAS-RAF mutations [J]. Clin Cancer Res, 2014, 20(16):4251-4261.
|
[53] |
Bertotti A, Papp E, Jones S, et al. The genomic landscape of response to EGFR blockade in colorectal cancer [J]. Nature, 2015, 526(7572):263-267.
|
[54] |
De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis [J]. Lancet Oncol, 2010, 11(8):753-762.
|
[55] |
Weickhardt AJ, Price TJ, Chong G, et al. Dual targeting of the epidermal growth factor receptor using the combination of cetuximab and erlotinib: preclinical evaluation and results of the phase II DUX study in chemotherapy-refractory, advanced colorectal cancer [J]. J Clin Oncol, 2012, 30(13):1505-1512.
|
[56] |
Dienstmann R, Patnaik A, Garcia-Carbonero R, et al. Safety and Activity of the First-in-Class Sym004 Anti-EGFR Antibody Mixture in Patients with Refractory Colorectal Cancer [J]. Cancer Discov, 2015, 5(6):598-609.
|
[57] |
Misale S, Bozic I, Tong J, et al. Vertical suppression of the EGFR pathway prevents onset of resistance in colorectal cancers [J]. Nat Commun, 2015, 6:8305.
|
[58] |
Tejpar S, Stintzing S, Ciardiello F, et al. Prognostic and Predictive Relevance of Primary Tumor Location in Patients With RAS Wild-Type Metastatic Colorectal Cancer: Retrospective Analyses of the CRYSTAL and FIRE-3 Trials [J]. JAMA Oncol, 2016.
|
[59] |
Zanella ER, Galimi F, Sassi F, et al. IGF2 is an actionable target that identifies a distinct subpopulation of colorectal cancer patients with marginal response to anti-EGFR therapies [J]. Sci Transl Med, 2015, 7(272):272.
|
[60] |
Elez E, Kocakova I, Hohler T, et al. Abituzumab combined with cetuximab plus irinotecan versus cetuximab plus irinotecan alone for patients with KRAS wild-type metastatic colorectal cancer: the randomised phase I/II POSEIDON trial [J]. Ann Oncol, 2015, 26(1):132-140.
|
[61] |
Ventura R, Mordec K, Waszczuk J, et al. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression [J]. EBioMedicine, 2015, 2(8):808-824.
|
[62] |
Gross MI, Demo SD, Dennison JB, et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer [J]. Mol Cancer Ther, 2014, 13(4):890-901.
|