切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2016, Vol. 05 ›› Issue (05) : 370 -375. doi: 10.3877/cma.j.issn.2095-3224.2016.05.001

所属专题: 文献

述评

结直肠癌的精准医学:大数据和微进展的时代
魏少忠1, 胡胜2,()   
  1. 1. 430071 武汉,湖北省肿瘤医院胃肠外科
    2. 湖北省肿瘤医院肿瘤内科
  • 收稿日期:2016-05-25 出版日期:2016-10-25
  • 通信作者: 胡胜

Precision medicine for colorectal cancer: a big data and micro-progress era

Shaozhong Wei1, Sheng Hu2,()   

  1. 1. Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Wuhan 430071, China
    2. Department of Medical Oncology, Hubei Cancer Hospital, Wuhan 430071, China
  • Received:2016-05-25 Published:2016-10-25
  • Corresponding author: Sheng Hu
  • About author:
    Corresponding author: Hu Sheng, Email:
引用本文:

魏少忠, 胡胜. 结直肠癌的精准医学:大数据和微进展的时代[J]. 中华结直肠疾病电子杂志, 2016, 05(05): 370-375.

Shaozhong Wei, Sheng Hu. Precision medicine for colorectal cancer: a big data and micro-progress era[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2016, 05(05): 370-375.

依据大数据为基础的结直肠癌精准医学是一个有吸引力的研究方向。虽然下一代测序(next generation sequencing,NGS)技术发展迅速,但科学和实践方面的挑战导致临床上进展微小。最大的挑战是驱动突变的识别,因为除了EGFR、MLH1、PIK3CA和KRAS基因异常,结直肠癌没有其他有效的致癌驱动突变存在。发展生物信息学工具,超深度测序和监测循环肿瘤DNA(circulating tumor DNA,ctDNA)方法,以帮助确定发生率微小的驱动突变,以及评估通路的激活,并进行联合治疗的方法,有助于在将来解决上述问题。大多数候选基因组改变的发生率微小,限制了精准医学的临床实践。解决策略是发展个体化的篮子试验或雨伞试验。

Precision medicine based on big data is an attractive research field in colorectal cancer. Though the next generation sequencing (NGS) technology has developed rapidly, the challenges from science and practice aspects make the clinical progress fairly slow. In addition to EGFR, MLH1, PIK3CA and KRAS gene abnormalities, no other specific oncogenic driver mutations are found in colorectal cancer, so the biggest challenge is the identification of driver mutations. The development of bioinformatics tools, the application of deep sequencing and circulating tumor DNA (ctDNA) monitoring are helpful to determine rare driver gene mutation rate, assess pathways activation and combine different treatments, which can solve the above problems in future. The change in most candidate genomes is small, which hampers the clinical practice of precision medicine. Individual basket trial or umbrella trial may conquer the limitation.

图1 基因组学研究的发展
[1]
Schultze JL. Teaching ′big data′ analysis to young immunologists[J]. Nat Immunol, 2015, 16(9): 902-905.
[2]
Friedman AA,Letai A,Fisher DE, et al. Precision medicine for cancer with next-generation functional diagnostics[J]. Nat Rev Cancer, 2015, 15(12): 747-756.
[3]
Reinert T,Schøler LV,Thomsen R, et al. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery[J]. Gut, 2016, 65(4): 625-634.
[4]
Bokemeyer, C., Bondarenko, I.,Hartmann, J., et al. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study[J]. Ann Oncol, 2011, 22(7): 1535-1546.
[5]
Douillard, J., Oliner, K.,Siena, S., et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer[J]. N Engl J Med, 2013, 369(11): 1023-1034.
[6]
Sartore-Bianchi, A., Martini, M.,Molinari, F., et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies[J]. Cancer Res, 2009, 69(5): 1851-1857.
[7]
De Roock, W., Claes, B.,Bernasconi, D., et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis[J]. Lancet Oncol, 2010, 11(8): 753-762.
[8]
Tabernero J,Lenz HJ,Siena S, et al. Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: a retrospective, exploratory analysis of the CORRECT trial[J]. Lancet Oncol, 2015, 6(8): 937-948.
[9]
Esteban-Jurado C,Vila-Casadesús M,Garre P, et al. Whole-exome sequencing identifies rare pathogenic variants in new predisposition genes for familial colorectal cancer[J]. Genet Med, 2015, 17(2): 131-142.
[10]
Chubb D,Broderick P,Frampton M, et al. Genetic diagnosis of high-penetrance susceptibility for colorectal cancer (CRC) is achievable for a high proportion of familial CRC by exome sequencing[J]. J Clin Oncol, 2015, 33(5): 426-432.
[11]
Leichman L,Groshen S,O’Neil BH, et al. Phase II study of Olaparib (AZD-2281) after standard systemic therapies for disseminated colorectal cancer[J]. Oncologist, 2016, 21(2): 172-177.
[12]
Garrido-Laguna I,Hong DS,Janku F, et al. KRASness and PIK3CAness in patients with advanced colorectal cancer: outcome after treatment with early-phase trials with targeted pathway inhibitors[J]. PLoS One, 2012, 7(5): e38033.
[13]
Tolcher AW,Khan K,Ong M, et al. Antitumor activity in RAS-driven tumors by blocking AKT and MEK[J]. Clin Cancer Res, 2015, 21(4): 739-748.
[14]
Do K,O′Sullivan Coyne G,Chen AP. An overview of the NCI precision medicine trials-NCI MATCH and MPACT[J]. Chin Clin Oncol, 2015, 4(3): 31.
[15]
Jovelet C,Ileana E,Le Deley MC, et al. Circulating Cell-Free Tumor DNA Analysis of 50 Genes by Next-Generation Sequencing in the Prospective MOSCATO Trial[J]. Clin Cancer Res, 2016, 22(12): 2960-2968.
[16]
Rodon J,Soria JC,Berger R, et al. Challenges in initiating and conducting personalized cancer therapy trials: perspectives from WINTHER, a Worldwide Innovative Network (WIN) Consortium trial[J]. Ann Oncol, 2015, 26(8): 1791-1798.
[17]
Zhang B,Wang J,Wang X, et al. Proteogenomic characterization of human colon and rectal cancer[J]. Nature, 2014, 513(7518): 382-387.
[18]
Bertotti A,Papp E,Jones S, et al. The genomic landscape of response to EGFR blockade in colorectal cancer[J]. Nature, 2015, 526(7572): 263-267.
[19]
Roychowdhury S,Chinnaiyan AM. Translating cancer genomes and transcriptomes for precision oncology[J]. CA Cancer J Clin, 2016, 66(1): 75-88.
[20]
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer[J]. Nature, 2012, 487(7407): 330-337.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 付佳, 肖海敏, 武曦, 冯涛, 师帅. 年龄校正查尔森合并症指数对腹腔镜结直肠癌围手术期并发症的预测价值[J]. 中华普通外科学文献(电子版), 2023, 17(05): 336-341.
[5] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[6] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[7] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[8] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[9] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[10] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[11] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[12] 黄怡诚, 陆晨, 孙司正, 喻春钊. 肝特异性转录因子FOXA2在人结直肠癌肝转移阶梯模型中的表达变化及其意义[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 396-403.
[13] 刘祺, 张凯, 李建男, 刘铜军. 结直肠癌肝转移生物治疗的现状及进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 415-419.
[14] 吴寅, 陈智琴, 高勇, 权明. Her-2阳性结直肠癌的诊治进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 420-425.
[15] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
阅读次数
全文


摘要