切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2016, Vol. 05 ›› Issue (05) : 370 -375. doi: 10.3877/cma.j.issn.2095-3224.2016.05.001

所属专题: 文献

述评

结直肠癌的精准医学:大数据和微进展的时代
魏少忠1, 胡胜2,()   
  1. 1. 430071 武汉,湖北省肿瘤医院胃肠外科
    2. 湖北省肿瘤医院肿瘤内科
  • 收稿日期:2016-05-25 出版日期:2016-10-25
  • 通信作者: 胡胜

Precision medicine for colorectal cancer: a big data and micro-progress era

Shaozhong Wei1, Sheng Hu2,()   

  1. 1. Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Wuhan 430071, China
    2. Department of Medical Oncology, Hubei Cancer Hospital, Wuhan 430071, China
  • Received:2016-05-25 Published:2016-10-25
  • Corresponding author: Sheng Hu
  • About author:
    Corresponding author: Hu Sheng, Email:
引用本文:

魏少忠, 胡胜. 结直肠癌的精准医学:大数据和微进展的时代[J/OL]. 中华结直肠疾病电子杂志, 2016, 05(05): 370-375.

Shaozhong Wei, Sheng Hu. Precision medicine for colorectal cancer: a big data and micro-progress era[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2016, 05(05): 370-375.

依据大数据为基础的结直肠癌精准医学是一个有吸引力的研究方向。虽然下一代测序(next generation sequencing,NGS)技术发展迅速,但科学和实践方面的挑战导致临床上进展微小。最大的挑战是驱动突变的识别,因为除了EGFR、MLH1、PIK3CA和KRAS基因异常,结直肠癌没有其他有效的致癌驱动突变存在。发展生物信息学工具,超深度测序和监测循环肿瘤DNA(circulating tumor DNA,ctDNA)方法,以帮助确定发生率微小的驱动突变,以及评估通路的激活,并进行联合治疗的方法,有助于在将来解决上述问题。大多数候选基因组改变的发生率微小,限制了精准医学的临床实践。解决策略是发展个体化的篮子试验或雨伞试验。

Precision medicine based on big data is an attractive research field in colorectal cancer. Though the next generation sequencing (NGS) technology has developed rapidly, the challenges from science and practice aspects make the clinical progress fairly slow. In addition to EGFR, MLH1, PIK3CA and KRAS gene abnormalities, no other specific oncogenic driver mutations are found in colorectal cancer, so the biggest challenge is the identification of driver mutations. The development of bioinformatics tools, the application of deep sequencing and circulating tumor DNA (ctDNA) monitoring are helpful to determine rare driver gene mutation rate, assess pathways activation and combine different treatments, which can solve the above problems in future. The change in most candidate genomes is small, which hampers the clinical practice of precision medicine. Individual basket trial or umbrella trial may conquer the limitation.

图1 基因组学研究的发展
[1]
Schultze JL. Teaching ′big data′ analysis to young immunologists[J]. Nat Immunol, 2015, 16(9): 902-905.
[2]
Friedman AA,Letai A,Fisher DE, et al. Precision medicine for cancer with next-generation functional diagnostics[J]. Nat Rev Cancer, 2015, 15(12): 747-756.
[3]
Reinert T,Schøler LV,Thomsen R, et al. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery[J]. Gut, 2016, 65(4): 625-634.
[4]
Bokemeyer, C., Bondarenko, I.,Hartmann, J., et al. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study[J]. Ann Oncol, 2011, 22(7): 1535-1546.
[5]
Douillard, J., Oliner, K.,Siena, S., et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer[J]. N Engl J Med, 2013, 369(11): 1023-1034.
[6]
Sartore-Bianchi, A., Martini, M.,Molinari, F., et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies[J]. Cancer Res, 2009, 69(5): 1851-1857.
[7]
De Roock, W., Claes, B.,Bernasconi, D., et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis[J]. Lancet Oncol, 2010, 11(8): 753-762.
[8]
Tabernero J,Lenz HJ,Siena S, et al. Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: a retrospective, exploratory analysis of the CORRECT trial[J]. Lancet Oncol, 2015, 6(8): 937-948.
[9]
Esteban-Jurado C,Vila-Casadesús M,Garre P, et al. Whole-exome sequencing identifies rare pathogenic variants in new predisposition genes for familial colorectal cancer[J]. Genet Med, 2015, 17(2): 131-142.
[10]
Chubb D,Broderick P,Frampton M, et al. Genetic diagnosis of high-penetrance susceptibility for colorectal cancer (CRC) is achievable for a high proportion of familial CRC by exome sequencing[J]. J Clin Oncol, 2015, 33(5): 426-432.
[11]
Leichman L,Groshen S,O’Neil BH, et al. Phase II study of Olaparib (AZD-2281) after standard systemic therapies for disseminated colorectal cancer[J]. Oncologist, 2016, 21(2): 172-177.
[12]
Garrido-Laguna I,Hong DS,Janku F, et al. KRASness and PIK3CAness in patients with advanced colorectal cancer: outcome after treatment with early-phase trials with targeted pathway inhibitors[J]. PLoS One, 2012, 7(5): e38033.
[13]
Tolcher AW,Khan K,Ong M, et al. Antitumor activity in RAS-driven tumors by blocking AKT and MEK[J]. Clin Cancer Res, 2015, 21(4): 739-748.
[14]
Do K,O′Sullivan Coyne G,Chen AP. An overview of the NCI precision medicine trials-NCI MATCH and MPACT[J]. Chin Clin Oncol, 2015, 4(3): 31.
[15]
Jovelet C,Ileana E,Le Deley MC, et al. Circulating Cell-Free Tumor DNA Analysis of 50 Genes by Next-Generation Sequencing in the Prospective MOSCATO Trial[J]. Clin Cancer Res, 2016, 22(12): 2960-2968.
[16]
Rodon J,Soria JC,Berger R, et al. Challenges in initiating and conducting personalized cancer therapy trials: perspectives from WINTHER, a Worldwide Innovative Network (WIN) Consortium trial[J]. Ann Oncol, 2015, 26(8): 1791-1798.
[17]
Zhang B,Wang J,Wang X, et al. Proteogenomic characterization of human colon and rectal cancer[J]. Nature, 2014, 513(7518): 382-387.
[18]
Bertotti A,Papp E,Jones S, et al. The genomic landscape of response to EGFR blockade in colorectal cancer[J]. Nature, 2015, 526(7572): 263-267.
[19]
Roychowdhury S,Chinnaiyan AM. Translating cancer genomes and transcriptomes for precision oncology[J]. CA Cancer J Clin, 2016, 66(1): 75-88.
[20]
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer[J]. Nature, 2012, 487(7407): 330-337.
[1] 林丽, 杨英, 张毅. 精准医学时代乳腺癌腋窝淋巴结的管理[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 193-198.
[2] 曾德荣, 马琳, 李星瀚, 胡伟涛, 刘琦, 邓永强. 多聚ADP核糖聚合酶1在口腔鳞状细胞癌精准诊疗中的作用机制及转化价值[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 269-275.
[3] 罗青杉, 梅海涛, 郝家领, 蔡锦锋, 周润楷, 温玉刚. 连接蛋白43通过调控细胞周期抑制结直肠癌的增殖机制研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 344-349.
[4] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[5] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[6] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[7] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[8] 赵磊, 刘文志, 林峰, 于剑, 孙铭骏, 崔佑刚, 张旭, 衣宇鹏, 于宝胜, 冯宁. 深部热疗在改善结直肠癌术后辅助化疗副反应及生活质量中的作用研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 488-493.
[9] 黄海洋, 邝永龙, 陈嘉胜. 基层医院结直肠肿瘤经自然腔道取标本手术30 例分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 510-518.
[10] 任佳琪, 刁德昌, 何自衍, 张雪阳, 唐新, 李文娟, 李洪明, 卢新泉, 易小江. 网膜融合线导向的脾曲游离技术在左半结肠癌根治术中的应用[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 362-367.
[11] 张迪, 王春霞, 张学东, 李发馨, 庞淅文, 陈一锋, 张维胜, 王涛. 梗阻性左半结直肠癌自膨式金属支架置入后行腹腔镜手术与开腹手术的短期临床疗效比较[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 375-380.
[12] 张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.
[13] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
[14] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[15] 李佳莹, 王旭丹, 梁雪, 张雷, 李佳英. 1990~2021年中国结直肠癌死亡趋势分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 274-279.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?