切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2025, Vol. 14 ›› Issue (04) : 370 -374. doi: 10.3877/cma.j.issn.2095-3224.2025.04.010

综述

瘤内菌群在结直肠癌中的作用研究进展
王乾宇, 郭寒川, 吴斌()   
  1. 100730 北京,中国医学科学院北京协和医院基本外科
  • 收稿日期:2025-03-13 出版日期:2025-08-25
  • 通信作者: 吴斌
  • 基金资助:
    中国医学科学院医学与健康科技创新工程(No. 2021-I2M-1-015)

Research progress on the role of intratumoral microbiota in colorectal cancer

Qianyu Wang, Hanchuan Guo, Bin Wu()   

  1. Department of Basic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
  • Received:2025-03-13 Published:2025-08-25
  • Corresponding author: Bin Wu
引用本文:

王乾宇, 郭寒川, 吴斌. 瘤内菌群在结直肠癌中的作用研究进展[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 370-374.

Qianyu Wang, Hanchuan Guo, Bin Wu. Research progress on the role of intratumoral microbiota in colorectal cancer[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2025, 14(04): 370-374.

微生物广泛存在于人体各个器官中,在结直肠癌的发生和发展中发挥着重要作用。目前,人们对肠道菌群已有较为全面的认识,但对瘤内菌群的了解仍然有限。越来越多的证据表明,瘤内菌群在塑造肿瘤微环境,特别是在结直肠癌中起着关键作用。瘤内菌群不仅影响结直肠肿瘤的起始、进展和转移,还对肿瘤治疗效果的调节起着重要作用。本综述旨在探讨瘤内菌群对结直肠癌及其治疗的潜在影响,以期为优化肿瘤治疗效果提供参考。

Microorganisms are ubiquitously present in various human organs and play a significant role in the occurrence and development of colorectal cancer. While the gut microbiota has been extensively studied, knowledge about the intratumoral microbiota remains limited. Emerging evidence suggests that the intratumoral microbiota plays a critical role in shaping the tumor microenvironment, particularly in colorectal cancer. These microbes not only contribute to tumor initiation, progression, and metastasis but also modulate therapeutic responses. This review summarizes the current understanding of the intratumoral microbiota in colorectal cancer and its potential implications for enhancing cancer treatment outcomes.

[1]
Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022 [J]. J Natl Cancer Cent, 2024, 4(1): 47-53.
[2]
张金珠,杨明,王锡山. 中国、美国及世界结直肠癌流行病学与疾病负担的对比和思考[J]. 中华结直肠疾病电子杂志, 2024, 13(2): 89-93.
[3]
Wang Q, Shen X, Chen G, et al. Drug resistance in colorectal cancer: from mechanism to clinic[J]. Cancers (Basel), 2022, 14(12): 2928.
[4]
Li S, Yu W, Xie F, et al. Neoadjuvant therapy with immune checkpoint blockade, antiangiogenesis, and chemotherapy for locally advanced gastric cancer [J]. Nat Commun, 2023, 14(1): 8.
[5]
Blake SJ, Wolf Y, Boursi B, et al. Role of the microbiota in response to and recovery from cancer therapy [J]. Nat Rev Immunol, 2023, 24(5): 308-325.
[6]
Ferrari V, Rescigno M. The intratumoral microbiota: friend or foe?[J]. Trends Cancer, 2023, 9(6): 472-479.
[7]
Xue C, Chu Q, Zheng Q, et al. Current understanding of the intratumoral microbiome in various tumors [J]. Cell Rep Med, 2023, 4(1): 100884.
[8]
Mouradov D, Greenfield P, Li S, et al. Oncomicrobial community profiling identifies clinicomolecular and prognostic subtypes of colorectal cancer[J]. Gastroenterology, 2023, 165(1): 104-120.
[9]
Wang N, Fang JY. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer[J]. Trends Microbiol, 2023, 31(2): 159-172.
[10]
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206.
[11]
Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21[J]. Gastroenterology, 2017, 152(4): 851-866.e24.
[12]
Zhang Y, Zhang L, Zheng S, et al. Fusobacterium nucleatum promotes colorectal cancer cells adhesion to endothelial cells and facilitates extravasation and metastasis by inducing ALPK1/NF-κB/ICAM1 axis[J]. Gut Microbes, 2022, 14(1): 2038852.
[13]
Chen S, Zhang L, Li M, et al. Fusobacterium nucleatum reduces METTL3-mediated m6A modification and contributes to colorectal cancer metastasis[J]. Nat Commun, 2022, 13(1): 1248.
[14]
Bertocchi A, Carloni S, Ravenda PS, et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver[J]. Cancer Cell, 2021, 39(5): 708-724.
[15]
Jans M, Kolata M, Blancke G, et al. Colibactin-driven colon cancer requires adhesin-mediated epithelial binding[J]. Nature, 2024, 635(8038): 472-480.
[16]
Zhang X, Yu D, Wu D, et al. Tissue-resident lachnospiraceae family bacteria protect against colorectal carcinogenesis by promoting tumor immune surveillance[J]. Cell Host Microbe, 2023, 31(3): 418-432.
[17]
LaCourse KD, Zepeda-Rivera M, Kempchinsky AG, et al. The cancer chemotherapeutic 5-fluorouracil is a potent Fusobacterium nucleatum inhibitor and its activity is modified by intratumoral microbiota[J]. Cell Rep, 2022, 41(7): 111625.
[18]
Serna G, Ruiz-Pace F, Hernando J, et al. Fusobacterium nucleatum persistence and risk of recurrence after preoperative treatment in locally advanced rectal cancer[J]. Ann Oncol, 2020, 31(10): 1366-1375.
[19]
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3): 548-563.
[20]
de Oliveira Alves N, Dalmasso G, Nikitina D, et al. The colibactin-producing Escherichia coli alters the tumor microenvironment to immunosuppressive lipid overload facilitating colorectal cancer progression and chemoresistance[J]. Gut Microbes, 2024, 16(1): 2320291.
[21]
Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science, 2013, 342(6161): 967-970.
[22]
Geller LT, Barzily-Rokni M, Danino T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine[J]. Science, 2017, 357(6356): 1156-1160.
[23]
Spanogiannopoulos P, Kyaw TS, Guthrie BGH, et al. Host and gut bacteria share metabolic pathways for anti-cancer drug metabolism[J]. Nat Microbiol, 2022, 7(10):1605-1620.
[24]
Lehouritis P, Cummins J, Stanton M, et al. Local bacteria affect the efficacy of chemotherapeutic drugs[J]. Sci Rep, 2015, 5:14554.
[25]
Huang X, Chen C, Xie W, et al. Metagenomic analysis of intratumoral microbiome linking to response to neoadjuvant chemoradiotherapy in rectal cancer[J]. Int J Radiat Oncol Biol Phys, 2023, 117(5): 1255-1269.
[26]
Wang Q, Shen X, Chen G, et al. How to overcome resistance to immune checkpoint inhibitors in colorectal cancer: from mechanisms to translation[J]. Int J Cancer, 2023, 153(4): 709-722.
[27]
Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371): 97-103.
[28]
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97.
[29]
Vétizou M, Pitt J M, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science, 2015, 350(6264): 1079-1084.
[30]
Gopalakrishnan V, Spencer C, Reuben A, et al. Association of diversity and composition of the gut microbiome with differential responses to PD-1 based therapy in patients with metastatic melanoma[J]. Journal of Clinical Oncology, 2017, 35(7_suppl): 2.
[31]
Li W, Deng Y, Chu Q, et al. Gut microbiome and cancer immunotherapy[J]. Cancer Lett, 2019, 447: 41-47.
[32]
Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity, 2015, 42(2): 344-355.
[33]
Borowsky J, Haruki K, Lau MC, et al. Association of Fusobacterium nucleatum with specific T-cell subsets in the colorectal carcinoma microenvironment[J]. Clin Cancer Res, 2021, 27(10): 2816-2826.
[34]
Gao Y, Bi D, Xie R, et al. Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 398.
[35]
Tahara T, Yamamoto E, Suzuki H, et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma[J]. Cancer Res, 2014, 74(5): 1311-1318.
[36]
Hamada T, Zhang X, Mima K, et al. Fusobacterium nucleatum in colorectal cancer relates to immune response differentially by tumor microsatellite instability status[J]. Cancer Immunol Res, 2018, 6(11): 1327-1336.
[37]
Park HE, Kim JH, Cho NY, et al. Intratumoral Fusobacterium nucleatum abundance correlates with macrophage infiltration and CDKN2A methylation in microsatellite-unstable colorectal carcinoma[J]. Virchows Arch, 2017, 471(3): 329-336.
[38]
Lin Y, Fan L, Qi Y, et al. Bifidobacterium adolescentis induces Decorin+ macrophages via TLR2 to suppress colorectal carcinogenesis[J]. J Exp Clin Cancer Res, 2023, 42(1): 172.
[39]
Overacre-Delgoffe AE, Bumgarner HJ, Cillo AR, et al. Microbiota-specific T follicular helper cells drive tertiary lymphoid structures and anti-tumor immunity against colorectal cancer[J]. Immunity, 2021, 54(12):2812-2824.
[40]
Xing C, Wang M, Ajibade AA, et al. Microbiota regulate innate immune signaling and protective immunity against cancer[J]. Cell Host Microbe, 2021, 29(6):959-974.
[41]
Yamamoto S, Kinugasa H, Hirai M, et al. Heterogeneous distribution of Fusobacterium nucleatum in the progression of colorectal cancer[J]. J Gastroenterol Hepatol, 2021, 36(7): 1869-1876.
[42]
Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer[J]. Science, 2017, 358(6369): 1443-1438.
[43]
Kosumi K, Hamada T, Koh H, et al. The amount of bifidobacterium genus in colorectal carcinoma tissue in relation to tumor characteristics and clinical outcome[J]. Am J Pathol, 2018, 188(12): 2839-2852.
[44]
Liu W, Zhang X, Xu H, et al. Microbial community heterogeneity within colorectal neoplasia and its correlation with colorectal carcinogenesis[J]. Gastroenterology, 2021, 160(7): 2395-2408.
[45]
Murphy CL, Barrett M, Pellanda P, et al. Mapping the colorectal tumor microbiota[J]. Gut Microbes, 2021, 13(1):1-10.
[46]
Flemer B, Lynch DB, Brown JMR, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer[J]. Gut, 2017, 66(4): 633-643.
[47]
Alexander JL, Posma JM, Scott A, et al. Pathobionts in the tumour microbiota predict survival following resection for colorectal cancer[J]. Microbiome, 2023, 11(1): 100.
[48]
Chen L, Zhao R, Shen J, et al. Antibacterial fusobacterium nucleatum-mimicking nanomedicine to selectively eliminate tumor-colonized bacteria and enhance immunotherapy against colorectal cancer[J]. Adv Mater, 2023, 35(45): e2306281.
[49]
Chen L, Kang Z, Shen J, et al. An emerging antibacterial nanovaccine for enhanced chemotherapy by selectively eliminating tumor-colonizing bacteria[J]. Sci Bull (Beijing), 2024, 69(16):2565-2579.
[50]
Gao G, Jiang YW, Chen J, et al. Three-in-one peptide prodrug with targeting, assembly and release properties for overcoming bacterium-induced drug resistance and potentiating anti-cancer immune response[J]. Adv Mater, 2024, 36(23): e2312153.
[51]
Gardner HA, Kashyap S, Ponichtera H, et al. Monoclonal microbial EDP1503 to induce antitumor responses via gut-mediated activation of both innate and adaptive immunity[J]. Journal of Clinical Oncology, 2019, 37(15_suppl): e14241.
[1] 杨春燕, 周晓苹. 机器人辅助技术在腹腔镜结直肠癌根治术中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 584-588.
[2] 陈明付, 王庆惠, 纪辉涛, 陈银珍, 余小娟, 陈怀章, 赵虎, 王瑜. 基于CiteSpace 对结直肠癌铁死亡研究现状的可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 179-189.
[3] 鲁旭, 李华. 结直肠癌肝转移肝移植治疗研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 508-514.
[4] 中国医师协会结直肠肿瘤专业委员会免疫学组. 结直肠癌免疫治疗专家共识(2025版)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 289-298.
[5] 中国医师协会结直肠肿瘤专业委员会术中放疗协作组. 结直肠癌术中放疗专家共识(2025版)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 299-306.
[6] 中国医师协会结直肠肿瘤专业委员会. 结直肠癌卵巢转移诊疗专家共识(2025版)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 307-318.
[7] 黄菊, 王猛, 韩冬. 双氢青蒿素通过JAK2/STAT3信号通路调节结直肠癌细胞的增殖、迁移、凋亡和免疫相关分子研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 319-332.
[8] 姚金平, 郭涛, 张逸辰, 常磊, 冯雨舟, 崔精, 陈建欢, 鲍传庆. 基于免疫微环境分析探讨FN1与DOCK2在结肠癌中的预后价值[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 333-344.
[9] 柯若影, 王培, 周炳文, 樊志敏. 中药调控肠癌干细胞抑制结直肠恶性肿瘤进展的研究现状[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 364-369.
[10] 王飞, 张凯, 姚占胜. 一种信号通路水平结直肠癌细胞系选择新视角探讨[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 179-183.
[11] 洪敏, 许建峰, 丰陈. 内脏型肥胖对结直肠癌根治术患者术后感染并发症的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 199-204.
[12] 孟凡涛, 刘慧林, 杨爽. 老年结直肠癌组织RAB7A 表达与其临床病理特征及肝转移的关系[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 205-209.
[13] 吴娟娟, 武海龙. 监测术前NLR、PLR 及SII 水平对全身麻醉下结直肠癌根治术后并发肠梗阻的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 214-218.
[14] 王雅琪, 李杨亮, 路萍. 定量和定性粪便免疫化学检测在结直肠癌及进展期腺瘤筛查中的应用[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 267-271.
[15] 张建秀, 聂娇, 杜超. 基于结肠镜标本的结肠癌类器官构建技术及临床科研应用前景探究[J/OL]. 中华胃肠内镜电子杂志, 2025, 12(02): 126-129.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?