[1] |
Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022 [J]. J Natl Cancer Cent, 2024, 4(1): 47-53.
|
[2] |
张金珠,杨明,王锡山. 中国、美国及世界结直肠癌流行病学与疾病负担的对比和思考[J]. 中华结直肠疾病电子杂志, 2024, 13(2): 89-93.
|
[3] |
Wang Q, Shen X, Chen G, et al. Drug resistance in colorectal cancer: from mechanism to clinic[J]. Cancers (Basel), 2022, 14(12): 2928.
|
[4] |
Li S, Yu W, Xie F, et al. Neoadjuvant therapy with immune checkpoint blockade, antiangiogenesis, and chemotherapy for locally advanced gastric cancer [J]. Nat Commun, 2023, 14(1): 8.
|
[5] |
Blake SJ, Wolf Y, Boursi B, et al. Role of the microbiota in response to and recovery from cancer therapy [J]. Nat Rev Immunol, 2023, 24(5): 308-325.
|
[6] |
Ferrari V, Rescigno M. The intratumoral microbiota: friend or foe?[J]. Trends Cancer, 2023, 9(6): 472-479.
|
[7] |
Xue C, Chu Q, Zheng Q, et al. Current understanding of the intratumoral microbiome in various tumors [J]. Cell Rep Med, 2023, 4(1): 100884.
|
[8] |
Mouradov D, Greenfield P, Li S, et al. Oncomicrobial community profiling identifies clinicomolecular and prognostic subtypes of colorectal cancer[J]. Gastroenterology, 2023, 165(1): 104-120.
|
[9] |
Wang N, Fang JY. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer[J]. Trends Microbiol, 2023, 31(2): 159-172.
|
[10] |
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206.
|
[11] |
Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21[J]. Gastroenterology, 2017, 152(4): 851-866.e24.
|
[12] |
Zhang Y, Zhang L, Zheng S, et al. Fusobacterium nucleatum promotes colorectal cancer cells adhesion to endothelial cells and facilitates extravasation and metastasis by inducing ALPK1/NF-κB/ICAM1 axis[J]. Gut Microbes, 2022, 14(1): 2038852.
|
[13] |
Chen S, Zhang L, Li M, et al. Fusobacterium nucleatum reduces METTL3-mediated m6A modification and contributes to colorectal cancer metastasis[J]. Nat Commun, 2022, 13(1): 1248.
|
[14] |
Bertocchi A, Carloni S, Ravenda PS, et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver[J]. Cancer Cell, 2021, 39(5): 708-724.
|
[15] |
Jans M, Kolata M, Blancke G, et al. Colibactin-driven colon cancer requires adhesin-mediated epithelial binding[J]. Nature, 2024, 635(8038): 472-480.
|
[16] |
Zhang X, Yu D, Wu D, et al. Tissue-resident lachnospiraceae family bacteria protect against colorectal carcinogenesis by promoting tumor immune surveillance[J]. Cell Host Microbe, 2023, 31(3): 418-432.
|
[17] |
LaCourse KD, Zepeda-Rivera M, Kempchinsky AG, et al. The cancer chemotherapeutic 5-fluorouracil is a potent Fusobacterium nucleatum inhibitor and its activity is modified by intratumoral microbiota[J]. Cell Rep, 2022, 41(7): 111625.
|
[18] |
Serna G, Ruiz-Pace F, Hernando J, et al. Fusobacterium nucleatum persistence and risk of recurrence after preoperative treatment in locally advanced rectal cancer[J]. Ann Oncol, 2020, 31(10): 1366-1375.
|
[19] |
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3): 548-563.
|
[20] |
de Oliveira Alves N, Dalmasso G, Nikitina D, et al. The colibactin-producing Escherichia coli alters the tumor microenvironment to immunosuppressive lipid overload facilitating colorectal cancer progression and chemoresistance[J]. Gut Microbes, 2024, 16(1): 2320291.
|
[21] |
Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science, 2013, 342(6161): 967-970.
|
[22] |
Geller LT, Barzily-Rokni M, Danino T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine[J]. Science, 2017, 357(6356): 1156-1160.
|
[23] |
Spanogiannopoulos P, Kyaw TS, Guthrie BGH, et al. Host and gut bacteria share metabolic pathways for anti-cancer drug metabolism[J]. Nat Microbiol, 2022, 7(10):1605-1620.
|
[24] |
Lehouritis P, Cummins J, Stanton M, et al. Local bacteria affect the efficacy of chemotherapeutic drugs[J]. Sci Rep, 2015, 5:14554.
|
[25] |
Huang X, Chen C, Xie W, et al. Metagenomic analysis of intratumoral microbiome linking to response to neoadjuvant chemoradiotherapy in rectal cancer[J]. Int J Radiat Oncol Biol Phys, 2023, 117(5): 1255-1269.
|
[26] |
Wang Q, Shen X, Chen G, et al. How to overcome resistance to immune checkpoint inhibitors in colorectal cancer: from mechanisms to translation[J]. Int J Cancer, 2023, 153(4): 709-722.
|
[27] |
Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371): 97-103.
|
[28] |
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97.
|
[29] |
Vétizou M, Pitt J M, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science, 2015, 350(6264): 1079-1084.
|
[30] |
Gopalakrishnan V, Spencer C, Reuben A, et al. Association of diversity and composition of the gut microbiome with differential responses to PD-1 based therapy in patients with metastatic melanoma[J]. Journal of Clinical Oncology, 2017, 35(7_suppl): 2.
|
[31] |
Li W, Deng Y, Chu Q, et al. Gut microbiome and cancer immunotherapy[J]. Cancer Lett, 2019, 447: 41-47.
|
[32] |
Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity, 2015, 42(2): 344-355.
|
[33] |
Borowsky J, Haruki K, Lau MC, et al. Association of Fusobacterium nucleatum with specific T-cell subsets in the colorectal carcinoma microenvironment[J]. Clin Cancer Res, 2021, 27(10): 2816-2826.
|
[34] |
Gao Y, Bi D, Xie R, et al. Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 398.
|
[35] |
Tahara T, Yamamoto E, Suzuki H, et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma[J]. Cancer Res, 2014, 74(5): 1311-1318.
|
[36] |
Hamada T, Zhang X, Mima K, et al. Fusobacterium nucleatum in colorectal cancer relates to immune response differentially by tumor microsatellite instability status[J]. Cancer Immunol Res, 2018, 6(11): 1327-1336.
|
[37] |
Park HE, Kim JH, Cho NY, et al. Intratumoral Fusobacterium nucleatum abundance correlates with macrophage infiltration and CDKN2A methylation in microsatellite-unstable colorectal carcinoma[J]. Virchows Arch, 2017, 471(3): 329-336.
|
[38] |
Lin Y, Fan L, Qi Y, et al. Bifidobacterium adolescentis induces Decorin+ macrophages via TLR2 to suppress colorectal carcinogenesis[J]. J Exp Clin Cancer Res, 2023, 42(1): 172.
|
[39] |
Overacre-Delgoffe AE, Bumgarner HJ, Cillo AR, et al. Microbiota-specific T follicular helper cells drive tertiary lymphoid structures and anti-tumor immunity against colorectal cancer[J]. Immunity, 2021, 54(12):2812-2824.
|
[40] |
Xing C, Wang M, Ajibade AA, et al. Microbiota regulate innate immune signaling and protective immunity against cancer[J]. Cell Host Microbe, 2021, 29(6):959-974.
|
[41] |
Yamamoto S, Kinugasa H, Hirai M, et al. Heterogeneous distribution of Fusobacterium nucleatum in the progression of colorectal cancer[J]. J Gastroenterol Hepatol, 2021, 36(7): 1869-1876.
|
[42] |
Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer[J]. Science, 2017, 358(6369): 1443-1438.
|
[43] |
Kosumi K, Hamada T, Koh H, et al. The amount of bifidobacterium genus in colorectal carcinoma tissue in relation to tumor characteristics and clinical outcome[J]. Am J Pathol, 2018, 188(12): 2839-2852.
|
[44] |
Liu W, Zhang X, Xu H, et al. Microbial community heterogeneity within colorectal neoplasia and its correlation with colorectal carcinogenesis[J]. Gastroenterology, 2021, 160(7): 2395-2408.
|
[45] |
Murphy CL, Barrett M, Pellanda P, et al. Mapping the colorectal tumor microbiota[J]. Gut Microbes, 2021, 13(1):1-10.
|
[46] |
Flemer B, Lynch DB, Brown JMR, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer[J]. Gut, 2017, 66(4): 633-643.
|
[47] |
Alexander JL, Posma JM, Scott A, et al. Pathobionts in the tumour microbiota predict survival following resection for colorectal cancer[J]. Microbiome, 2023, 11(1): 100.
|
[48] |
Chen L, Zhao R, Shen J, et al. Antibacterial fusobacterium nucleatum-mimicking nanomedicine to selectively eliminate tumor-colonized bacteria and enhance immunotherapy against colorectal cancer[J]. Adv Mater, 2023, 35(45): e2306281.
|
[49] |
Chen L, Kang Z, Shen J, et al. An emerging antibacterial nanovaccine for enhanced chemotherapy by selectively eliminating tumor-colonizing bacteria[J]. Sci Bull (Beijing), 2024, 69(16):2565-2579.
|
[50] |
Gao G, Jiang YW, Chen J, et al. Three-in-one peptide prodrug with targeting, assembly and release properties for overcoming bacterium-induced drug resistance and potentiating anti-cancer immune response[J]. Adv Mater, 2024, 36(23): e2312153.
|
[51] |
Gardner HA, Kashyap S, Ponichtera H, et al. Monoclonal microbial EDP1503 to induce antitumor responses via gut-mediated activation of both innate and adaptive immunity[J]. Journal of Clinical Oncology, 2019, 37(15_suppl): e14241.
|