切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2025, Vol. 14 ›› Issue (04) : 319 -332. doi: 10.3877/cma.j.issn.2095-3224.2025.04.004

论著

双氢青蒿素通过JAK2/STAT3信号通路调节结直肠癌细胞的增殖、迁移、凋亡和免疫相关分子研究
黄菊1, 王猛1,2, 韩冬1,()   
  1. 1150081 哈尔滨医科大学生物化学与分子生物学教研室
    2310005 杭州,浙江省肿瘤医院结直肠外科
  • 收稿日期:2024-09-18 出版日期:2025-08-25
  • 通信作者: 韩冬
  • 基金资助:
    浙江省医药卫生科技计划(No. 2023RC135,No.2024KY795); 浙江省中医药科技计划(No. 2024ZL303); 浙江省自然科学基金华东医药企业创新发展联合基金项目(No. LHDMY24H070002)

Research on dihydroartemisinin regulates the proliferation, migration, apoptosis and immune-related molecules of colorectal cancer cells through JAK2/STAT3 signaling pathway

Ju Huang1, Meng Wang1,2, Dong Han1,()   

  1. 1Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
    2Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou 310005, China
  • Received:2024-09-18 Published:2025-08-25
  • Corresponding author: Dong Han
引用本文:

黄菊, 王猛, 韩冬. 双氢青蒿素通过JAK2/STAT3信号通路调节结直肠癌细胞的增殖、迁移、凋亡和免疫相关分子研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 319-332.

Ju Huang, Meng Wang, Dong Han. Research on dihydroartemisinin regulates the proliferation, migration, apoptosis and immune-related molecules of colorectal cancer cells through JAK2/STAT3 signaling pathway[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2025, 14(04): 319-332.

目的

观察双氢青蒿素(DHA)对结直肠癌细胞增殖、迁移、凋亡和免疫相关分子的影响,并探究其潜在机制。

方法

将人结直肠癌细胞HCT116细胞和RKO细胞作为研究对象,使用6 umol·L-1的DHA处理HCT116细胞,使用12 umol·L-1的DHA处理RKO细胞,采用CCK8实验检测细胞活性;克隆形成实验检测细胞克隆情况;划痕实验和Transwell实验检测细胞迁移情况;Calcein-AM/PI双染法检测细胞死亡的数量变化;Western blot检测凋亡相关蛋白Bcl-2和Cleaved-caspase3的变化、信号通路蛋白JAK2/p-JAK2和STAT3/p-STAT3的变化、免疫分子PD-L1和CD47的变化;实时荧光定量PCR(qRT-PCR)检测免疫因子PD-L1和CD47在mRNA水平中的变化。

结果

与对照组相比,6.25、12.5、25、50、100 umol·L-1的DHA处理结直肠癌细胞48 h后,随着药物浓度增大和处理时间延长,细胞活性显著降低;DHA处理后细胞增殖受到抑制(HCT116:3.021±0.014 vs. 2.449±0.008,t=8.302,P<0.001;RKO:2.666±0.006 vs. 2.122±0.025,t=11.26,P<0.001);细胞克隆形成计数显著降低(HCT116:252±6.11 vs. 161.7±3.253,t=13.02,P<0.001;RKO:329.4±9.368 vs. 204±9.818,t=9.241,P<0.001);细胞迁移能力下降(HCT116:26.29%±0.947% vs. 15.2%±1.409%,t=6.533,P<0.01;RKO:30.59%±1.441% vs. 14.77%±0.39%,t=10.6,P<0.001);细胞死亡增多(HCT116:37.54%±2.128% vs. 58.74%±1.498%,t=8.145,P<0.01;RKO:23.97%±1.203% vs. 34.02%±2.225%,t=3.973,P<0.05)。Western blot结果显示DHA处理后,Bcl-2蛋白含量下降(HCT116:1.001±0.002 vs. 0.551±0.07,t=6.419,P<0.01;RKO:1.001±0.002 vs. 0.827±0.013,t=12.98,P<0.001),Cleaved-caspase3蛋白含量升高(HCT116:1.001±0.002 vs. 1.344±0.119,t=2.904,P<0.05;RKO:1.001±0.002 vs. 1.515±0.086,t=5.995,P<0.01),PD-L1和CD47蛋白含量下降(HCT116:PD-L1:0.999±0.001 vs. 0.829±0.029,t=5.517,P<0.01,CD47:1.001±0.002 vs. 0.763±0.083,t=4.883,P<0.01;RKO:PD-L1:0.995±0.007 vs. 0.885±0.021,t=2.867,P<0.05,CD47:0.991±0.011 vs. 0.562±0.093,t=4.577,P<0.05),p-JAK2和p-STAT3蛋白含量均下降(HCT116:p-JAK2:1.018±0.019 vs. 0.678±0.066,t=4.901,P<0.01,p-STAT3:0.999±0.002 vs. 0.691±0.092,t=3.351,P<0.05;RKO:p-JAK2:1.018±0.019 vs. 0.475±0.064,t=7.092,P<0.001,p-STAT3:0.999±0.002 vs. 0.488±0.091,t=6.926,P<0.001)。qRT-PCR检测结果显示DHA处理后PD-L1和CD47的mRNA表达下降(HCT116:PD-L1:1.002±0.042 vs. 0.888±0.019,t=4.052,P<0.05,CD47:1±0.003 vs. 0.868±0.014,t=9.098,P<0.001;RKO:PD-L1:1±0.002 vs. 0.671±0.024,t=13.64,P<0.001,CD47:1.011±0.02 vs. 0.727±0.02,t=10.07,P<0.001)。加入JAK2激动剂Coumermycin A1后,抵消了DHA对结直肠癌细胞的抑制作用。

结论

DHA能通过抑制JAK2/STAT3信号通路来抑制结直肠癌细胞增殖、迁移,促进细胞凋亡并调控免疫相关分子。

Objective

This study investigates the effects of Dihydroartemisinin (DHA) on the proliferation, migration, apoptosis, and immune-related molecules of colorectal cancer cells, along with the underlying mechanisms involved.

Methods

Human colorectal cancer cells HCT116 and RKO were treated with 6 umol·L-1 and 12 umol·L-1of DHA, respectively. Cell viability was detected using the CCK-8 assay; colony formation assay was used to detect cell cloning; wound healing assay and Transwell assay were used to evaluate cell migration; the Calcein-AM/PI double staining was used to assess changes in the number of dead cells; Western blot analysis was used to detect changes in apoptosis-related proteins Bcl-2 and Cleaved-caspase3, signal pathway proteins JAK2/p-JAK2 and STAT3/p-STAT3, and immune factors PD-L1 and CD47. Additionally, quantitative Realtime PCR(qRT-PCR) was performed to measure the changes of immune factors PD-L1 and CD47 at the mRNA level.

Results

Compared with the control group, treatment of HCT116 and RKO cells with DHA at concentrations of 6.25、12.5、25、50、100 umol·L-1 for 48 h results in a significant decrease in cell viability with increasing drug concentration and prolonged treatment duration. Cell proliferation was inhibited by DHA treatment (HCT116: 3.021±0.014 vs. 2.449±0.008, t=8.302, P<0.001; RKO: 2.666±0.006 vs. 2.122±0.025, t=11.26, P<0.001). The cell clone formation count was significantly decreased (HCT116: 252±6.11 vs. 161.7±3.253, t=13.02, P<0.001; RKO: 329.4±9.368 vs. 204±9.818, t=9.241, P<0.001), cell migration ability decreased (HCT116: 26.29%±0.947% vs. 15.2%±1.409%, t=6.533, P<0.01; RKO: 30.59%±1.441% vs. 14.77%±0.39%, t=10.6, P<0.001) and cell death (HCT116: 37.54%±2.128% vs. 58.74%±1.498%, t=8.145, P<0.01; RKO: 23.97%±1.203% vs. 34.02%±2.225%, t=3.973, P<0.05) increased. Western blot results demonstrate that DHA treatment leads to a decrease in Bcl-2 protein levels (HCT116: 1.001±0.002 vs. 0.551±0.07, t=6.419, P<0.01; RKO: 1.001±0.002 vs. 0.827±0.013, t=12.98, P<0.001), an increase in Cleaved-caspase3 protein levels (HCT116: 1.001±0.002 vs. 1.344±0.119, t=2.904, P<0.05; RKO: 1.001±0.002 vs. 1.515±0.086, t=5.995, P<0.01), and reductions in PD-L1 and CD47 protein levels (HCT116: PD-L1: 0.999±0.001 vs. 0.829±0.029, t=5.517, P<0.01, CD47: 1.001±0.002 vs. 0.763±0.083, t=4.883, P<0.01; RKO: PD-L1: 0.995±0.007 vs. 0.885±0.021, t=2.867, P<0.05, CD47: 0.991±0.011 vs. 0.562±0.093, t=4.577, P<0.05), along with a reduction in the levels of p-JAK2 and p-STAT3 (HCT116: p-JAK2: 1.018±0.019 vs. 0.678±0.066, t=4.901, P<0.01, p-STAT3: 0.999±0.002 vs. 0.691±0.092, t=3.351, P<0.05; RKO: p-JAK2: 1.018±0.019 vs. 0.475±0.064, t=7.092, P<0.001, p-STAT3: 0.999±0.002 vs. 0.488±0.091, t=6.926, P<0.001). qRT-PCR analysis further shows that DHA treatment results in decreased mRNA expression of PD-L1 and CD47 (HCT116: PD-L1: 1.002±0.042 vs. 0.888±0.019, t=4.052, P<0.05, CD47: 1±0.003 vs. 0.868±0.014, t=9.098, P<0.001; RKO: PD-L1: 1±0.002 vs. 0.671±0.024, t=13.64, P<0.001, CD47: 1.011±0.02 vs. 0.727±0.02, t=10.07, P<0.001). The addition of the JAK2 agonist Coumermycin A1 counteracts the inhibitory effects of DHA on colorectal cancer cells.

Conclusion

DHA can inhibit the proliferation and migration of colorectal cancer cells, promote apoptosis, and regulate immune-related molecules by inhibiting JAK2/STAT3 signaling pathway.

图1 DHA抑制结直肠癌细胞活力(±sn=3)。1A:HCT116细胞系的IC50;1B:RKO细胞系的IC50
图2 DHA抑制结直肠癌细胞的增殖(±sn=3)。2A:CCK8实验显示DHA抑制HCT116细胞的增殖;2B:CCK8实验显示DHA抑制RKO细胞的增殖;2C:克隆形成实验显示DHA抑制HCT116细胞克隆团的形成;2D:HCT116细胞克隆形成数量的统计图;2E:克隆形成实验显示DHA抑制RKO细胞克隆团的形成;2F:RKO细胞克隆形成数量的统计图。***:P<0.001
图3 DHA抑制结直肠癌细胞的迁移(±sn=3)。3A:划痕实验显示DHA降低HCT116细胞的迁移率;3B:HCT116细胞相对迁移率的统计图;3C:划痕实验显示DHA降低RKO细胞的迁移率;3D:RKO细胞相对迁移率的统计图;3E:Transwell实验显示DHA减少HCT116细胞的迁移个数;3F:HCT116细胞迁移个数的统计图;3G:Transwell实验显示DHA减少RKO细胞的迁移个数;3H:RKO细胞迁移个数的统计图。**:P<0.01,***:P<0.001
图4 DHA促进结直肠癌细胞的凋亡(±sn=3)。4A:Calcein-AM/PI活细胞/死细胞染色实验显示HCT116细胞死亡数增多;4B:HCT116细胞死亡率的统计图;4C:Calcein-AM/PI活细胞/死细胞染色实验显示RKO细胞死亡数增多;4D:RKO细胞死亡率的统计图;4E:Western blot检测DHA对Bcl-2和Cleaved-caspase3蛋白表达的影响;4F:HCT116细胞Western blot的统计图;4G:RKO细胞Western blot的统计图。*:P<0.05,**:P<0.01,***:P<0.001
图5 DHA抑制免疫检查点分子的表达(±sn=3)。5A:实时荧光定量PCR检测DHA对PD-L1在mRNA表达的影响;5B:实时荧光定量PCR检测DHA对CD47在mRNA表达的影响;5C:Western blot检测DHA对PD-L1蛋白表达的影响;5D:HCT116细胞Western blot的统计图;5E:RKO细胞Western blot的统计图;5F:Western blot检测DHA对CD47蛋白表达的影响;5G:HCT116细胞Western blot的统计图;5H:RKO细胞Western blot的统计图。*:P<0.05,**:P<0.01,***:P<0.001
图6 DHA抑制JAK2/STAT3通路蛋白的表达(±sn=3)。6A:Western blot检测DHA对JAK2、p-JAK2、STAT3、p-STAT3蛋白表达的影响;6B:HCT116细胞Western blot的统计图;6C:RKO细胞Western blot的统计图。*:P<0.05,**:P<0.01,***:P<0.001
表1 DHA抑制HCT116细胞后JAK2/STAT3通路蛋白的表达(±sn=3)
表2 DHA抑制RKO细胞后JAK2/STAT3通路蛋白的表达(±sn=3)
图7 JAK2激动剂Coumermycin A1逆反DHA对结直肠癌细胞的抑制作用(±sn=3)。7A:克隆形成实验检测加入DHA和Coumermycin A1后细胞克隆团的变化;7B:HCT116细胞克隆形成数量的统计图;7C:RKO细胞克隆形成数量的统计图;7D:Transwell实验检测加入DHA和Coumermycin A1后细胞迁移个数的变化;7E:HCT116细胞迁移个数的统计图;7F:RKO细胞迁移个数的统计图;7G:Western blot检测DHA对JAK2、p-JAK2、STAT3、p-STAT3、PD-L1、CD47和Bcl-2蛋白表达的影响;7H:HCT116细胞Western blot的统计图;7I:RKO细胞Western blot的统计图。*:P<0.05,**:P<0.01,***:P<0.001
表3 JAK2激动剂Coumermycin A1在HCT116细胞中逆反DHA对相关蛋白表达的抑制作用(±sn=3)
表4 JAK2激动剂Coumermycin A1在RKO细胞中逆反DHA对相关蛋白表达的抑制作用(±sn=3)
[1]
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1): 12-49.
[2]
Body A, Prenen H, Latham S, et al. The role of neoadjuvant chemotherapy in locally advanced colon cancer[J]. Cancer Manag Res, 2021, 13: 2567-2579.
[3]
Visacri MB, Duarte NC, Lima TM, et al. Adverse reactions and adherence to capecitabine: a prospective study in patients with gastrointestinal cancer[J]. J Oncol Pharm Pract, 2022, 28(2): 326-336.
[4]
Thanikachalam K, Khan G. Colorectal cancer and nutrition[J]. Nutrients, 2019, 11(1): 164.
[5]
Benson AB, Venook AP, Al-Hawary MM, et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(3): 329-359.
[6]
Tu YY. Artemisinin-a gift from traditional Chinese medicine to the world (Nobel Lecture)[J]. Angew Chem Int Ed Engl, 2016, 55(35): 10210-10226.
[7]
Tu YY. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine[J]. Nature Medicine, 2011, 17(10): 1217-1220.
[8]
张岩,马丽辉,邓黎黎, 等. 二氢青蒿素对弥漫性大B细胞淋巴瘤发挥抗肿瘤作用的研究[J]. 中国实验血液学杂志, 2022, 30(5): 1428-1434.
[9]
李苒苒,陆文睿,陶敏, 等. 双氢青蒿素调控宫颈癌Hela细胞的增殖迁移及其分子机制[J]. 皖南医学院学报, 2020, 39(4): 315-318.
[10]
孙维栋,王鑫,王莹, 等. 双氢青蒿素与三氧化二砷对急性髓系白血病细胞凋亡的影响[J]. 中国实验血液学杂志, 2022, 30(5): 1337-1342.
[11]
李旭,鲍蕾蕾,姜爽, 等. 纳米雄黄诱导B细胞非霍奇金淋巴瘤Raji细胞凋亡和自噬的研究[J]. 中南药学, 2023, 21(1): 58-62.
[12]
孙维栋,余醒醒,安依涵, 等. 双氢青蒿素通过激活氧化应激诱导人急性T淋巴细胞白血病细胞凋亡[J]. 中国实验血液学杂志, 2020, 28(3): 753-757.
[13]
Dai XS, Zhang XY, Chen W, et al. Dihydroartemisinin: a potential natural anticancer drug[J]. Int J Biol Sci, 2021, 17(2): 603-622.
[14]
Zheng JF, Li XH, Yang WL, et al. Dihydroartemisinin regulates apoptosis, migration, and invasion of ovarian cancer cells via mediating RECK[J]. J Pharmacol Sci, 2021, 146(2): 71-81.
[15]
Yuan B, Liao F, Shi ZZ, et al. Dihydroartemisinin inhibits the proliferation, colony formation and induces ferroptosis of lung cancer cells by inhibiting PRIM2/SLC7A11 axis[J]. Onco Targets Ther, 2020, 13: 10829-10840.
[16]
Wang T, Luo RT, Li W, et al. Dihydroartemisinin suppresses bladder cancer cell invasion and migration by regulating KDM3A and p21[J]. J Cancer, 2020, 11(5): 1115-1124.
[17]
Zhang J, Li Y, Wang JG, et al. Dihydroartemisinin affects STAT3/DDA1 signaling pathway and reverses breast cancer resistance to cisplatin[J]. Am J Chin Med, 2023, 51(2): 445-459.
[18]
Bai BJ, Wu F, Ying KK, et al. Therapeutic effects of dihydroartemisinin in multiple stages of colitis-associated colorectal cancer[J]. Theranostics, 2021, 11(13): 6225-6239.
[19]
Yu Y, Chen DD, Wu T, et al. Dihydroartemisinin enhances the anti-tumor activity of oxaliplatin in colorectal cancer cells by altering PRDX2-reactive oxygen species-mediated multiple signaling pathways[J]. Phytomedicine, 2022, 98: 153932.
[20]
Yi YC, Liang R, Chen XY, et al. Dihydroartemisinin suppresses the tumorigenesis and cycle progression of colorectal cancer by targeting CDK1/CCNB1/PLK1 signaling[J]. Front Oncol, 2021, 11: 768879.
[21]
Zhu LL, Chen XH, Zhu YY, et al. Dihydroartemisinin inhibits the proliferation of esophageal squamous cell carcinoma partially by targeting AKT1 and p70S6K[J]. Front Pharmacol, 2020, 11: 587470.
[22]
Zhou Q, Ye FF, Qiu JX, et al. Dihydroartemisinin induces ER stress-mediated apoptosis in human tongue squamous carcinoma by regulating ROS production[J]. Anticancer Agents Med Chem, 2022, 22(16): 2902-2908.
[23]
Ma Q, Liao HB, Xu L, et al. Autophagy-dependent cell cycle arrest in esophageal cancer cells exposed to dihydroartemisinin[J]. Chin Med, 2020, 15: 37.
[24]
Jin W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial-mesenchymal transition[J]. Cells, 2020, 9(1): 217.
[25]
Luo DD, Zhao F. KLF4 suppresses the proliferation and metastasis of NSCLC cells via inhibition of MSI2 and regulation of the JAK/STAT3 signaling pathway[J]. Transl Oncol, 2022, 22: 101396.
[26]
王一祺,徐明,修文超. 丹参酮联合大黄素通过JAK/STAT3信号通路抑制结直肠癌细胞增殖、迁移的实验研究[J]. 中国现代普通外科进展, 2020, 23(9): 679-682+687.
[27]
李红,陈金锐,杨智源. 蛇床子素对口腔癌KB细胞周期进程及凋亡的影响[J]. 中成药, 2023, 45(11): 3803-3807.
[28]
Dong YX, Tan H, Wang LD, et al. Progranulin promoted the proliferation, metastasis, and suppressed apoptosis via JAK2-STAT3/4 signaling pathway in papillary thyroid carcinoma[J]. Cancer Cell Int, 2023, 23(1): 191.
[29]
Yang GH, Sheng BW, Li RX, et al. Dehydrocostus lactone induces apoptosis and cell cycle arrest through regulation of JAK2/STAT3/PLK1 signaling pathway in human esophageal squamous cell carcinoma cells[J]. Anticancer Agents Med Chem, 2022, 22(9): 1742-1752.
[30]
Wang XR, Jiang ZB, Xu C, et al. Andrographolide suppresses non-small-cell lung cancer progression through induction of autophagy and antitumor immune response[J]. Pharmacol Res, 2022, 179: 106198.
[31]
You XL, Jiang XY, Zhang CM, et al. Dihydroartemisinin attenuates pulmonary inflammation and fibrosis in rats by suppressing JAK2/STAT3 signaling[J]. Aging, 2022, 14(3): 1110-1127.
[32]
Jia LF, Song Q, Zhou CY, et al. Dihydroartemisinin as a putative STAT3 inhibitor, suppresses the growth of head and neck squamous cell carcinoma by targeting Jak2/STAT3 signaling[J]. PLos One, 2016, 11(1): e0147157.
[33]
Guanizo AC, Fernando CD, Garama DJ, et al. STAT3: a multifaceted oncoprotein[J]. Growth Factors, 2018, 36(1-2): 1-14.
[34]
马骏,刘倩,王孝彬. 吉马酮抑制JAK2/STAT3信号通路对食管癌细胞增殖、凋亡和侵袭的影响[J]. 实用肿瘤杂志, 2024, 39(3): 228-235.
[35]
Cao YY, Yu J, Liu TT, et al. Plumbagin inhibits the proliferation and survival of esophageal cancer cells by blocking STAT3-PLK1-AKT signaling[J]. Cell Death Dis, 2018, 9(2): 17.
[36]
Ko H, Lee JH, Kim HS, et al. Novel galiellalactone analogues can target STAT3 phosphorylation and cause apoptosis in triple-negative breast cancer[J]. Biomolecules, 2019, 9(5): 170.
[37]
Xi XP, Hu R, Wang Q, et al. Interleukin-22 promotes PD-L1 expression via STAT3 in colon cancer cells[J]. Oncol Lett, 2021, 22(4): 716.
[38]
Ai LY, Xu AT, Xu J. Roles of PD-1/PD-L1 pathway: signaling, cancer, and beyond[J]. Adv Exp Med Biol, 2020, 1248: 33-59.
[39]
Jia X, Yan BJ, Tian XQ, et al. CD47/SIRPα pathway mediates cancer immune escape and immunotherapy[J]. Int J Biol Sci, 2021, 17(13): 3281-3287.
[40]
Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer[J]. Nat Rev Clin Oncol, 2018, 15(4): 234-248.
[41]
Liu YZ, Xu QS, Deng F, et al. HERC2 promotes inflammation-driven cancer stemness and immune evasion in hepatocellular carcinoma by activating STAT3 pathway[J]. J Exp Clin Cancer Res, 2023, 42(1): 38.
[1] 高仪轩, 张筱伟, 李宝龙, 胡文治, 郝永红, 邹晓防. 对全厚微粒皮移植治疗自身免疫病相关性溃疡的临床疗效分析[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(04): 290-295.
[2] 高峰, 郝少龙, 孙浩, 韩威. 三级淋巴结构在胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 570-573.
[3] 杨春燕, 周晓苹. 机器人辅助技术在腹腔镜结直肠癌根治术中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 584-588.
[4] 李博, 翟炜, 郑军华. CD70在肾细胞癌精准诊疗中的价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 399-403.
[5] 陈琼, 吴卓龙, 黄吉炜. 免疫治疗在局部进展期肾癌围手术期治疗中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 418-422.
[6] 刘新锋, 邓煜麟, 刘孝德, 闫道先, 石双胜, 黄德成, 刘悦, 刘学斌, 许朋, 董传江. 肥大细胞免疫球蛋白样受体1在肾透明细胞癌中的表达及临床意义[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 483-491.
[7] 谭廷武, 张平新, 夏成兴, 杨德林. 单细胞测序技术在前列腺癌免疫治疗中的应用现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 508-513.
[8] 张辉, 林金铭, 郭高伟, 李鑫基, 张伟, 黄沛东, 郑长征, 陈晓生, 卢勇. 广东省医学会泌尿外科疑难病例多学科会诊(第17期)——右肾巨大肿瘤并腔静脉癌栓和髂血管血栓[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 532-538.
[9] 鲁旭, 李华. 结直肠癌肝转移肝移植治疗研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 508-514.
[10] 杨钰泽, 徐家豪, 杨一石, 王明达, 杨田. 肝细胞癌新辅助治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 515-521.
[11] 刘晓萍, 汪嵘嵘, 吴佳慧, 吴紫云, 周伯宣. 多组学分析HAPLN1与肝癌预后及免疫细胞浸润关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 609-618.
[12] 中国医师协会结直肠肿瘤专业委员会免疫学组. 结直肠癌免疫治疗专家共识(2025版)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 289-298.
[13] 中国医师协会结直肠肿瘤专业委员会术中放疗协作组. 结直肠癌术中放疗专家共识(2025版)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 299-306.
[14] 中国医师协会结直肠肿瘤专业委员会. 结直肠癌卵巢转移诊疗专家共识(2025版)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 307-318.
[15] 刘阳, 梁浩, 高洁, 朱琳, 崔阳光, 郭高超, 高涛, 孙玉学, 刘自强, 栗超跃, 赵黎明. 人脑胶质瘤中IKBKE和Aurora A的表达与临床病理特征相关性的分析[J/OL]. 中华临床医师杂志(电子版), 2025, 19(04): 263-268.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?