[1] |
Prasad M. Introduction to the GRADE tool for rating certainty in evidence and recommendations[J]. Clin Epidemiol Glob Health, 2024, 25: 101484.
|
[2] |
Pino MS, Chung DC. Microsatellite instability in the management of colorectal cancer[J]. Expert Rev Gastroenterol Hepatol, 2011, 5(3): 385-399.
|
[3] |
Wu S, Liu X, Wang J, et al. DNA mismatch repair deficiency detection in colorectal cancer by a new microsatellite instability analysis system[J]. Interdiscip Sci: Comput Life Sci, 2020, 12(2): 145-154.
|
[4] |
中国临床肿瘤学会结直肠癌专家委员会,中国抗癌协会大肠癌专业委员会遗传学组,中国医师协会结直肠肿瘤专业委员会遗传专委会. 结直肠癌及其他相关实体瘤微卫星不稳定性检测中国专家共识[J]. 实用肿瘤杂志, 2019, 41(10): 734-741.
|
[5] |
Wang F, Zhao Q, Wang YN, et al. Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types[J]. JAMA Oncol, 2019, 5(10): 1504-1506.
|
[6] |
Domingo E, Freeman-Mills L, Rayner E, et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study[J]. Lancet Gastroenterol Hepatol, 2016, 1(3): 207-216.
|
[7] |
Campbell BB, Light N, Fabrizio D, et al. Comprehensive analysis of hypermutation in human cancer[J]. Cell, 2017, 171(5): 1042-1056.e10.
|
[8] |
Ambrosini M, Rousseau B, Manca P, et al. Immune checkpoint inhibitors for POLE or POLD1 proofreading-deficient metastatic colorectal cancer[J]. Ann Oncol, 2024, 35(7): 643-655.
|
[9] |
Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study[J]. Lancet Oncol, 2020, 21(10): 1353-1365.
|
[10] |
Wang J, Xiu J, Farrell A, et al. Mutational analysis of microsatellite-stable gastrointestinal cancer with high tumour mutational burden: a retrospective cohort study[J]. Lancet Oncol, 2023, 24(2): 151-161.
|
[11] |
Ganesh K, Stadler ZK, Cercek A, et al. Immunotherapy in colorectal cancer: rationale, challenges and potential[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(6): 361-375.
|
[12] |
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015, 372(26): 2509-2520.
|
[13] |
Alexander PG, McMillan DC, Park JH. A meta-analysis of CD274 (PD-L1) assessment and prognosis in colorectal cancer and its role in predicting response to anti-PD-1 therapy[J]. Crit Rev Oncol Hematol, 2021, 157: 103147.
|
[14] |
Maas M, Lambregts DMJ, Nelemans PJ, et al. Assessment of clinical complete response after chemoradiation for rectal cancer with digital rectal examination, endoscopy, and MRI: selection for organ-saving treatment[J]. Ann Surg Oncol, 2015, 22(12): 3873-3880.
|
[15] |
Nougaret S, Gormly K, Lambregts DMJ, et al. MRI of the rectum: a decade into distance, moving to distanced[J]. Radiology, 2025, 314(1): e232838.
|
[16] |
Chen K, She HL, Wu T, et al. Comparison of percentage changes in quantitative diffusion parameters for assessing pathological complete response to neoadjuvant therapy in locally advanced rectal cancer: a meta-analysis[J]. Abdom Radiol(NY), 2021, 46(3): 894-908.
|
[17] |
Bates DDB, Homsi ME, Chang KJ, et al. MRI for rectal cancer: staging, mrCRM, EMVI, lymph node staging and post-treatment response[J]. Clin Color Cancer, 2022, 21(1): 10-18.
|
[18] |
Perez RO, Habr-Gama A, Julião GPS, et al. Predicting complete response to neoadjuvant CRT for distal rectal cancer using sequential PET/CT imaging[J]. Tech Coloproctology, 2014, 18(8): 699-708.
|
[19] |
Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers[J]. Nat Med, 2020, 26(4): 566-576.
|
[20] |
Cercek A, Lumish M, Sinopoli J, et al. PD-1 blockade in mismatch repair–deficient, locally advanced rectal cancer[J]. N Engl J Med, 2022, 386(25): 2363-2376.
|
[21] |
Chen G, Jin Y, Guan WL, et al. Neoadjuvant PD-1 blockade with sintilimab in mismatch-repair deficient, locally advanced rectal cancer: an open-label, single-centre phase 2 study[J]. Lancet Gastroenterol Hepatol, 2023, 8(5): 422-431.
|
[22] |
Hu H, Kang L, Zhang J, et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2022, 7(1): 38-48.
|
[23] |
Yu JH, Xiao BY, Li DD, et al. Neoadjuvant camrelizumab plus apatinib for locally advanced microsatellite instability-high or mismatch repair-deficient colorectal cancer (NEOCAP): a single-arm, open-label, phase 2 study[J]. Lancet Oncol, 2024, 25(7): 843-852.
|
[24] |
Wang QX, Xiao BY, Cheng Y, et al. Anti-PD-1-based immunotherapy as curative-intent treatment in dMMR/MSI-H rectal cancer: a multicentre cohort study[J]. Eur J Cancer, 2022, 174: 176-184.
|
[25] |
Yu JH, Liao LE, Xiao BY, et al. Long-term outcomes of dMMR/MSI-H rectal cancer treated with anti–PD-1–based immunotherapy as curative-intent treatment[J]. J Natl Compr Cancer Netw, 2024, 22(3): e237096.
|
[26] |
Chalabi M, Verschoor YL, Tan PB, et al. Neoadjuvant immunotherapy in locally advanced mismatch repair–deficient colon cancer[J]. N Engl J Med, 2024, 390(21): 1949-1958.
|
[27] |
Xu RH, Wang F, Chen G, et al. Neoadjuvant treatment of IBI310 (anti-CTLA-4 antibody) plus sintilimab (anti-PD-1 antibody) in patients with microsatellite instability-high/mismatch repair-deficient colorectal cancer: results from a randomized, open-labeled, phase Ib study[J]. J Clin Oncol, 2024, 42(suppl. 16): 3505.
|
[28] |
Qvortrup C, Justesen TF, Tarpgaard LS, et al. Single-cycle neoadjuvant pembrolizumab in patients with stage I-Ⅲ MMR-deficient colon cancer: final analysis of the RESET-C study[J]. J Clin Oncol, 2025, 43(suppl. 4): 19.
|
[29] |
Shiu KK, Jiang Y, Saunders M, et al. NEOPRISM-CRC: neoadjuvant pembrolizumab stratified to tumour mutation burden for high risk stage 2 or stage 3 deficient-MMR/MSI-high colorectal cancer[J]. J Clin Oncol, 2024, 42(suppl. 17): LBA3504.
|
[30] |
Ludford K, Ho WJ, Thomas JV, et al. Neoadjuvant pembrolizumab in localized microsatellite instability high/deficient mismatch repair solid tumors[J]. J Clin Oncol, 2023, 41(12): 2181-2190.
|
[31] |
Cohen R, Taieb J, Fiskum J, et al. Microsatellite instability in patients with stage Ⅲ colon cancer receiving fluoropyrimidine with or without oxaliplatin: an accent pooled analysis of 12 adjuvant trials[J]. J Clin Oncol, 2021, 39(6): 642-651.
|
[32] |
Hou Z, Jiang W, Tang J, et al. PACE: a phase Ⅲ trial of CAPOX versus anti-PD-1 inhibitor as adjuvant therapy for patients with dMMR/MSI-H stage Ⅲ colon cancer[J]. J Clin Oncol, 2023, 41(suppl. 16): TPS3637.
|
[33] |
Andre T, Elez E, Lenz HJ, et al. First results of nivolumab (NIVO) plus ipilimumab (IPI) vs. NIVO monotherapy for microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC) from CheckMate 8HW[J]. J Clin Oncol, 2025, 43(suppl. 4): LBA143.
|
[34] |
André T, Elez E, Lenz HJ, et al. Nivolumab plus ipilimumab versus nivolumab in microsatellite instability-high metastatic colorectal cancer (CheckMate 8HW): a randomised, open-label, phase 3 trial[J]. Lancet, 2025, 405(10476): 383-395.
|
[35] |
André T, Shiu KK, Kim TW, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer[J]. N Engl J Med, 2020, 383(23): 2207-2218.
|
[36] |
Bui QL, Mas L, Hollebecque A, et al. Treatments after immune checkpoint inhibitors in patients with dMMR/MSI metastatic colorectal cancer[J]. Cancers, 2022, 14(2): 406.
|
[37] |
Kasi PM, Budde G, Krainock M, et al. Circulating tumor DNA (ctDNA) serial analysis during progression on PD-1 blockade and later CTLA-4 rescue in patients with mismatch repair deficient metastatic colorectal cancer[J]. J Immunother Cancer, 2022, 10(1): e003312.
|
[38] |
Chen M, Wang Z, Liu Z, et al. The optimal therapy after progression on immune checkpoint inhibitors in MSI metastatic gastrointestinal cancer patients: a multicenter retrospective cohort study[J]. Cancers(Basel), 2022, 14(20): 5158.
|
[39] |
Kawazoe A, Xu RH, García-Alfonso P, et al. Lenvatinib plus pembrolizumab versus standard of care for previously treated metastatic colorectal cancer: final analysis of the randomized, open-label, phase Ⅲ LEAP-017 study[J]. J Clin Oncol, 2024, 42(24): 2918-2927.
|
[40] |
Lin ZY, Zhang P, Chi P, et al. Neoadjuvant short-course radiotherapy followed by camrelizumab and chemotherapy in locally advanced rectal cancer (UNION): early outcomes of a multicenter randomized phase Ⅲ trial[J]. Ann Oncol, 2024, 35(10): 882-891.
|
[41] |
Xia F, Wang Y, Wang H, et al. Randomized Phase II trial of immunotherapy-based total neoadjuvant therapy for proficient mismatch repair or microsatellite stable locally advanced rectal cancer (TORCH)[J]. J Clin Oncol, 2024, 42(28): 3308-3318.
|
[42] |
Xiao WW, Chen G, Gao YH, et al. Effect of neoadjuvant chemoradiotherapy with or without PD-1 antibody sintilimab in pMMR locally advanced rectal cancer: a randomized clinical trial[J]. Cancer Cell, 2024, 42(9): 1570-1581. e4.
|
[43] |
Antoniotti C, Rossini D, Pietrantonio F, et al. Upfront FOLFOXIRI plus bevacizumab with or without atezolizumab in the treatment of patients with metastatic colorectal cancer (AtezoTRIBE): a multicentre, open-label, randomised, controlled, phase 2 trial[J]. Lancet Oncol, 2022, 23(7): 876-887.
|
[44] |
Lenz HJ, Parikh A, Spigel DR, et al. Modified FOLFOX6 plus bevacizumab with and without nivolumab for first-line treatment of metastatic colorectal cancer: phase 2 results from the CheckMate 9X8 randomized clinical trial[J]. J Immunother Cancer, 2024, 12(3): e008409.
|
[45] |
Wang ZX, Peng J, Liang X, et al. First-line serplulimab in metastatic colorectal cancer: Phase 2 results of a randomized, double-blind, phase 2/3 trial[J]. Med, 2024, 5(9): 1150-1163.e3.
|
[46] |
Yang Y, Pang K, Lin G, et al. Neoadjuvant chemoradiation with or without PD-1 blockade in locally advanced rectal cancer: a randomized phase 2 trial[J]. Nat Med, 2025, 31(2): 449-456.
|
[47] |
Chen N, Pu C, Zhao L, et al. Chimeric antigen receptor T cells targeting CD19 and GCC in metastatic colorectal cancer[J]. JAMA Oncol, 2024, 10(11): 1532-1536.
|
[48] |
Parkhurst M, Goff SL, Lowery FJ, et al. Adoptive transfer of personalized neoantigen-reactive TCR-transduced T cells in metastatic colorectal cancer: phase 2 trial interim results[J]. Nat Med, 2024, 30(9): 2586-2595.
|
[49] |
Maoz A, Rennert G, Gruber SB. T-Cell transfer therapy targeting mutant kras[J]. N Engl J Med, 2017, 376(7): e11.
|