切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2025, Vol. 14 ›› Issue (04) : 289 -298. doi: 10.3877/cma.j.issn.2095-3224.2025.04.001

指南与共识

结直肠癌免疫治疗专家共识(2025版)
中国医师协会结直肠肿瘤专业委员会免疫学组   
  • 收稿日期:2025-05-06 出版日期:2025-08-25
  • 基金资助:
    四大慢病重大专项(No. 2024ZD0520100)

Expert consensus on immunotherapy for colorectal cancer (2025 Version)

The Immunology Group of Colorectal Cancer Professional Committee of the Chinese Medical Doctor Association   

  • Received:2025-05-06 Published:2025-08-25
引用本文:

中国医师协会结直肠肿瘤专业委员会免疫学组. 结直肠癌免疫治疗专家共识(2025版)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 289-298.

The Immunology Group of Colorectal Cancer Professional Committee of the Chinese Medical Doctor Association. Expert consensus on immunotherapy for colorectal cancer (2025 Version)[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2025, 14(04): 289-298.

结直肠癌是我国发病率位居第二的恶性肿瘤,在我国其发病率和死亡率呈上升趋势,严重威胁人民群众的生命健康。免疫治疗为结直肠癌治疗带来新突破,但仅对特定分子亚型患者有效,在分子检测、影像评估、优势人群选择及治疗策略等方面存在争议,给临床医师的诊疗决策带来了困扰。为了进一步规范和指导结直肠癌免疫治疗的临床实践,推动我国结直肠癌免疫治疗的高质量发展,中国医师协会结直肠肿瘤专业委员会免疫学组组织多学科专家,基于中国人群结直肠癌的疾病特点和现有的诊疗体系特色,依据循证医学证据制定本共识。共识围绕分子检测与诊断、影像评估、围手术期治疗、转移性结直肠癌(mCRC)治疗等多个关键方面展开讨论,形成一系列具有针对性和实用性的推荐意见,旨在为临床实践提供指导,从而更好地控制患者病情、提高患者生存质量并延长生存时间。

Colorectal cancer is the second most common malignant tumor in China, and its incidence and mortality rates are on the rise, posing a serious threat to the lives and health of the people. Immunotherapy has brought new breakthroughs in colorectal cancer treatment. However, it is effective only for specific molecular subtypes, controversies persist in multiple aspects. Controversies exist in aspects such as molecular testing, imaging evaluation, selection of advantageous populations, and treatment strategies, which have caused troubles for clinicians in making diagnostic and therapeutic decisions. To standardize and guide the clinical practice of colorectal cancer immunotherapy, the Immunology Group of Colorectal Cancer Professional Committee of the Chinese Medical Doctor Association organized multidisciplinary experts to develop this consensus. Based on the disease characteristics of colorectal cancer in the Chinese population and China’s existing diagnostic and treatment systems, the consensus recommendations are grounded in evidence-based medical research. The consensus focuses on imaging evaluation, perioperative treatment, treatment of metastatic colorectal cancer(mCRC), and future directions, while formulating targeted and practical recommendations. The consensus aims to optimize clinical practice, improve disease control, enhance patient quality of life, and prolong survival.

表1 专家共识证据等级[1]
表2 专家共识推荐等级[1]
表3 MMR/MSI检测方法对比[4]
[1]
Prasad M. Introduction to the GRADE tool for rating certainty in evidence and recommendations[J]. Clin Epidemiol Glob Health, 2024, 25: 101484.
[2]
Pino MS, Chung DC. Microsatellite instability in the management of colorectal cancer[J]. Expert Rev Gastroenterol Hepatol, 2011, 5(3): 385-399.
[3]
Wu S, Liu X, Wang J, et al. DNA mismatch repair deficiency detection in colorectal cancer by a new microsatellite instability analysis system[J]. Interdiscip Sci: Comput Life Sci, 2020, 12(2): 145-154.
[4]
中国临床肿瘤学会结直肠癌专家委员会,中国抗癌协会大肠癌专业委员会遗传学组,中国医师协会结直肠肿瘤专业委员会遗传专委会. 结直肠癌及其他相关实体瘤微卫星不稳定性检测中国专家共识[J]. 实用肿瘤杂志, 2019, 41(10): 734-741.
[5]
Wang F, Zhao Q, Wang YN, et al. Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types[J]. JAMA Oncol, 2019, 5(10): 1504-1506.
[6]
Domingo E, Freeman-Mills L, Rayner E, et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study[J]. Lancet Gastroenterol Hepatol, 2016, 1(3): 207-216.
[7]
Campbell BB, Light N, Fabrizio D, et al. Comprehensive analysis of hypermutation in human cancer[J]. Cell, 2017, 171(5): 1042-1056.e10.
[8]
Ambrosini M, Rousseau B, Manca P, et al. Immune checkpoint inhibitors for POLE or POLD1 proofreading-deficient metastatic colorectal cancer[J]. Ann Oncol, 2024, 35(7): 643-655.
[9]
Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study[J]. Lancet Oncol, 2020, 21(10): 1353-1365.
[10]
Wang J, Xiu J, Farrell A, et al. Mutational analysis of microsatellite-stable gastrointestinal cancer with high tumour mutational burden: a retrospective cohort study[J]. Lancet Oncol, 2023, 24(2): 151-161.
[11]
Ganesh K, Stadler ZK, Cercek A, et al. Immunotherapy in colorectal cancer: rationale, challenges and potential[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(6): 361-375.
[12]
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015, 372(26): 2509-2520.
[13]
Alexander PG, McMillan DC, Park JH. A meta-analysis of CD274 (PD-L1) assessment and prognosis in colorectal cancer and its role in predicting response to anti-PD-1 therapy[J]. Crit Rev Oncol Hematol, 2021, 157: 103147.
[14]
Maas M, Lambregts DMJ, Nelemans PJ, et al. Assessment of clinical complete response after chemoradiation for rectal cancer with digital rectal examination, endoscopy, and MRI: selection for organ-saving treatment[J]. Ann Surg Oncol, 2015, 22(12): 3873-3880.
[15]
Nougaret S, Gormly K, Lambregts DMJ, et al. MRI of the rectum: a decade into distance, moving to distanced[J]. Radiology, 2025, 314(1): e232838.
[16]
Chen K, She HL, Wu T, et al. Comparison of percentage changes in quantitative diffusion parameters for assessing pathological complete response to neoadjuvant therapy in locally advanced rectal cancer: a meta-analysis[J]. Abdom Radiol(NY), 2021, 46(3): 894-908.
[17]
Bates DDB, Homsi ME, Chang KJ, et al. MRI for rectal cancer: staging, mrCRM, EMVI, lymph node staging and post-treatment response[J]. Clin Color Cancer, 2022, 21(1): 10-18.
[18]
Perez RO, Habr-Gama A, Julião GPS, et al. Predicting complete response to neoadjuvant CRT for distal rectal cancer using sequential PET/CT imaging[J]. Tech Coloproctology, 2014, 18(8): 699-708.
[19]
Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers[J]. Nat Med, 2020, 26(4): 566-576.
[20]
Cercek A, Lumish M, Sinopoli J, et al. PD-1 blockade in mismatch repair–deficient, locally advanced rectal cancer[J]. N Engl J Med, 2022, 386(25): 2363-2376.
[21]
Chen G, Jin Y, Guan WL, et al. Neoadjuvant PD-1 blockade with sintilimab in mismatch-repair deficient, locally advanced rectal cancer: an open-label, single-centre phase 2 study[J]. Lancet Gastroenterol Hepatol, 2023, 8(5): 422-431.
[22]
Hu H, Kang L, Zhang J, et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2022, 7(1): 38-48.
[23]
Yu JH, Xiao BY, Li DD, et al. Neoadjuvant camrelizumab plus apatinib for locally advanced microsatellite instability-high or mismatch repair-deficient colorectal cancer (NEOCAP): a single-arm, open-label, phase 2 study[J]. Lancet Oncol, 2024, 25(7): 843-852.
[24]
Wang QX, Xiao BY, Cheng Y, et al. Anti-PD-1-based immunotherapy as curative-intent treatment in dMMR/MSI-H rectal cancer: a multicentre cohort study[J]. Eur J Cancer, 2022, 174: 176-184.
[25]
Yu JH, Liao LE, Xiao BY, et al. Long-term outcomes of dMMR/MSI-H rectal cancer treated with anti–PD-1–based immunotherapy as curative-intent treatment[J]. J Natl Compr Cancer Netw, 2024, 22(3): e237096.
[26]
Chalabi M, Verschoor YL, Tan PB, et al. Neoadjuvant immunotherapy in locally advanced mismatch repair–deficient colon cancer[J]. N Engl J Med, 2024, 390(21): 1949-1958.
[27]
Xu RH, Wang F, Chen G, et al. Neoadjuvant treatment of IBI310 (anti-CTLA-4 antibody) plus sintilimab (anti-PD-1 antibody) in patients with microsatellite instability-high/mismatch repair-deficient colorectal cancer: results from a randomized, open-labeled, phase Ib study[J]. J Clin Oncol, 2024, 42(suppl. 16): 3505.
[28]
Qvortrup C, Justesen TF, Tarpgaard LS, et al. Single-cycle neoadjuvant pembrolizumab in patients with stage I-Ⅲ MMR-deficient colon cancer: final analysis of the RESET-C study[J]. J Clin Oncol, 2025, 43(suppl. 4): 19.
[29]
Shiu KK, Jiang Y, Saunders M, et al. NEOPRISM-CRC: neoadjuvant pembrolizumab stratified to tumour mutation burden for high risk stage 2 or stage 3 deficient-MMR/MSI-high colorectal cancer[J]. J Clin Oncol, 2024, 42(suppl. 17): LBA3504.
[30]
Ludford K, Ho WJ, Thomas JV, et al. Neoadjuvant pembrolizumab in localized microsatellite instability high/deficient mismatch repair solid tumors[J]. J Clin Oncol, 2023, 41(12): 2181-2190.
[31]
Cohen R, Taieb J, Fiskum J, et al. Microsatellite instability in patients with stage Ⅲ colon cancer receiving fluoropyrimidine with or without oxaliplatin: an accent pooled analysis of 12 adjuvant trials[J]. J Clin Oncol, 2021, 39(6): 642-651.
[32]
Hou Z, Jiang W, Tang J, et al. PACE: a phase Ⅲ trial of CAPOX versus anti-PD-1 inhibitor as adjuvant therapy for patients with dMMR/MSI-H stage Ⅲ colon cancer[J]. J Clin Oncol, 2023, 41(suppl. 16): TPS3637.
[33]
Andre T, Elez E, Lenz HJ, et al. First results of nivolumab (NIVO) plus ipilimumab (IPI) vs. NIVO monotherapy for microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC) from CheckMate 8HW[J]. J Clin Oncol, 2025, 43(suppl. 4): LBA143.
[34]
André T, Elez E, Lenz HJ, et al. Nivolumab plus ipilimumab versus nivolumab in microsatellite instability-high metastatic colorectal cancer (CheckMate 8HW): a randomised, open-label, phase 3 trial[J]. Lancet, 2025, 405(10476): 383-395.
[35]
André T, Shiu KK, Kim TW, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer[J]. N Engl J Med, 2020, 383(23): 2207-2218.
[36]
Bui QL, Mas L, Hollebecque A, et al. Treatments after immune checkpoint inhibitors in patients with dMMR/MSI metastatic colorectal cancer[J]. Cancers, 2022, 14(2): 406.
[37]
Kasi PM, Budde G, Krainock M, et al. Circulating tumor DNA (ctDNA) serial analysis during progression on PD-1 blockade and later CTLA-4 rescue in patients with mismatch repair deficient metastatic colorectal cancer[J]. J Immunother Cancer, 2022, 10(1): e003312.
[38]
Chen M, Wang Z, Liu Z, et al. The optimal therapy after progression on immune checkpoint inhibitors in MSI metastatic gastrointestinal cancer patients: a multicenter retrospective cohort study[J]. Cancers(Basel), 2022, 14(20): 5158.
[39]
Kawazoe A, Xu RH, García-Alfonso P, et al. Lenvatinib plus pembrolizumab versus standard of care for previously treated metastatic colorectal cancer: final analysis of the randomized, open-label, phase Ⅲ LEAP-017 study[J]. J Clin Oncol, 2024, 42(24): 2918-2927.
[40]
Lin ZY, Zhang P, Chi P, et al. Neoadjuvant short-course radiotherapy followed by camrelizumab and chemotherapy in locally advanced rectal cancer (UNION): early outcomes of a multicenter randomized phase Ⅲ trial[J]. Ann Oncol, 2024, 35(10): 882-891.
[41]
Xia F, Wang Y, Wang H, et al. Randomized Phase II trial of immunotherapy-based total neoadjuvant therapy for proficient mismatch repair or microsatellite stable locally advanced rectal cancer (TORCH)[J]. J Clin Oncol, 2024, 42(28): 3308-3318.
[42]
Xiao WW, Chen G, Gao YH, et al. Effect of neoadjuvant chemoradiotherapy with or without PD-1 antibody sintilimab in pMMR locally advanced rectal cancer: a randomized clinical trial[J]. Cancer Cell, 2024, 42(9): 1570-1581. e4.
[43]
Antoniotti C, Rossini D, Pietrantonio F, et al. Upfront FOLFOXIRI plus bevacizumab with or without atezolizumab in the treatment of patients with metastatic colorectal cancer (AtezoTRIBE): a multicentre, open-label, randomised, controlled, phase 2 trial[J]. Lancet Oncol, 2022, 23(7): 876-887.
[44]
Lenz HJ, Parikh A, Spigel DR, et al. Modified FOLFOX6 plus bevacizumab with and without nivolumab for first-line treatment of metastatic colorectal cancer: phase 2 results from the CheckMate 9X8 randomized clinical trial[J]. J Immunother Cancer, 2024, 12(3): e008409.
[45]
Wang ZX, Peng J, Liang X, et al. First-line serplulimab in metastatic colorectal cancer: Phase 2 results of a randomized, double-blind, phase 2/3 trial[J]. Med, 2024, 5(9): 1150-1163.e3.
[46]
Yang Y, Pang K, Lin G, et al. Neoadjuvant chemoradiation with or without PD-1 blockade in locally advanced rectal cancer: a randomized phase 2 trial[J]. Nat Med, 2025, 31(2): 449-456.
[47]
Chen N, Pu C, Zhao L, et al. Chimeric antigen receptor T cells targeting CD19 and GCC in metastatic colorectal cancer[J]. JAMA Oncol, 2024, 10(11): 1532-1536.
[48]
Parkhurst M, Goff SL, Lowery FJ, et al. Adoptive transfer of personalized neoantigen-reactive TCR-transduced T cells in metastatic colorectal cancer: phase 2 trial interim results[J]. Nat Med, 2024, 30(9): 2586-2595.
[49]
Maoz A, Rennert G, Gruber SB. T-Cell transfer therapy targeting mutant kras[J]. N Engl J Med, 2017, 376(7): e11.
[1] 陈隆, 段晓鑫, 王思卓, 董胜利. 胃癌免疫治疗的现状[J/OL]. 中华普通外科学文献(电子版), 2025, 19(03): 177-182.
[2] 高峰, 郝少龙, 孙浩, 韩威. 三级淋巴结构在胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 570-573.
[3] 杨春燕, 周晓苹. 机器人辅助技术在腹腔镜结直肠癌根治术中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 584-588.
[4] 李博, 翟炜, 郑军华. CD70在肾细胞癌精准诊疗中的价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 399-403.
[5] 陈琼, 吴卓龙, 黄吉炜. 免疫治疗在局部进展期肾癌围手术期治疗中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 418-422.
[6] 谭廷武, 张平新, 夏成兴, 杨德林. 单细胞测序技术在前列腺癌免疫治疗中的应用现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 508-513.
[7] 张辉, 林金铭, 郭高伟, 李鑫基, 张伟, 黄沛东, 郑长征, 陈晓生, 卢勇. 广东省医学会泌尿外科疑难病例多学科会诊(第17期)——右肾巨大肿瘤并腔静脉癌栓和髂血管血栓[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 532-538.
[8] 王少军, 黄丛秀, 刘彩霞, 苏乌云. 阿得贝利单抗治疗肺大细胞神经内分泌癌伴乳腺转移1例[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 494-496.
[9] 陈明付, 王庆惠, 纪辉涛, 陈银珍, 余小娟, 陈怀章, 赵虎, 王瑜. 基于CiteSpace 对结直肠癌铁死亡研究现状的可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 179-189.
[10] 鲁旭, 李华. 结直肠癌肝转移肝移植治疗研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 508-514.
[11] 杨钰泽, 徐家豪, 杨一石, 王明达, 杨田. 肝细胞癌新辅助治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 515-521.
[12] 中国医师协会结直肠肿瘤专业委员会, 中华医学会外科学分会结直肠外科学组, 中国医师协会肛肠医师分会, 中国医师协会结直肠肿瘤专业委员会低位直肠癌保肛学组. 低位直肠癌术前多学科整合临床决策专家共识(2025版)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 221-233.
[13] 沈汶娟, 潘怡, 董林, 邹霜梅. 中国微卫星不稳定大肠癌患者临床病理特征分析[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 251-258.
[14] 张传鹏, 张瑜廉, 党韩寒, 何昆, 陈鹏宇, 张昀昇, 张黎, 于炎冰. 胶质母细胞瘤免疫治疗挑战与cGAS-STING通路纳米策略研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 153-160.
[15] 洪敏, 许建峰, 丰陈. 内脏型肥胖对结直肠癌根治术患者术后感染并发症的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 199-204.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?