切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2025, Vol. 14 ›› Issue (04) : 333 -344. doi: 10.3877/cma.j.issn.2095-3224.2025.04.005

论著

基于免疫微环境分析探讨FN1与DOCK2在结肠癌中的预后价值
姚金平1, 郭涛1, 张逸辰2, 常磊1, 冯雨舟2, 崔精1, 陈建欢1, 鲍传庆2,()   
  1. 1214122 江南大学无锡医学院
    2214122 无锡市,江南大学附属医院胃肠外科
  • 收稿日期:2025-03-24 出版日期:2025-08-25
  • 通信作者: 鲍传庆
  • 基金资助:
    无锡市卫生健康委科研项目(No. Z202213)

A prognostic study of FN1 and DOCK2 in colorectal cancer through immune microenvironment analysis

Jinping Yao1, Tao Guo1, Yichen Zhang2, Lei Chang1, Yuzhou Feng2, Jing Cui1, Jianhuan Chen1, Chuanqing Bao2,()   

  1. 1Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
    2Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
  • Received:2025-03-24 Published:2025-08-25
  • Corresponding author: Chuanqing Bao
引用本文:

姚金平, 郭涛, 张逸辰, 常磊, 冯雨舟, 崔精, 陈建欢, 鲍传庆. 基于免疫微环境分析探讨FN1与DOCK2在结肠癌中的预后价值[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 333-344.

Jinping Yao, Tao Guo, Yichen Zhang, Lei Chang, Yuzhou Feng, Jing Cui, Jianhuan Chen, Chuanqing Bao. A prognostic study of FN1 and DOCK2 in colorectal cancer through immune microenvironment analysis[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2025, 14(04): 333-344.

目的

探讨结肠癌免疫微环境特征,筛选关键免疫相关基因并评估其预后价值,为免疫治疗靶点筛选及预后分层提供依据。

方法

基于TCGA数据库514例结肠癌患者转录组及体细胞突变数据,利用CIBERSORT和ESTIMATE算法计算免疫评分、间质评分及ESTIMATE评分,随后,评估这些评分与患者生存结局(如总生存期)及各项临床病理参数之间的统计学关联。采用limma包筛选差异表达基因(DEGs),结合GO/KEGG富集分析明确功能;通过体细胞突变分析鉴定差异突变基因(DMGs),并与DEGs交叉验证,进一步分析关键基因与肿瘤浸润免疫细胞及预后的相关性,利用临床数据及细胞实验对结果进行验证。

结果

高免疫评分与结肠癌患者总生存期显著正相关(低/高组:140,51,17,7,3 vs. 309,93,15,5,2;χ2=6.45,P=0.011),且免疫评分随肿瘤分期进展而显著下降。共筛选出627个免疫相关DEGs,富集于细胞因子受体相互作用等免疫通路。结合突变分析,识别出FN1和DOCK2为差异表达及突变的交叉关键基因:FN1高表达提示不良预后(χ2=6.44,P=0.011),其表达随分期增加而升高,且与淋巴结转移、远处转移呈显著正相关;DOCK2高表达具有保护作用(χ2=3.17,P=0.075),其表达随分期增加而下降,并与远处转移负相关。实验显示FN1在结肠癌组织和外周血中显著高表达(t=2.24,P=0.0257;t=3.54,P=0.0004),DOCK2显著低表达(t=−2.23,P=0.0260;t=−3.54,P<0.0001)。功能实验表明,FN1敲低可抑制癌细胞增殖(48 h:t=3.58,P=0.0006;60 h:t=3.66,P=0.0005)、侵袭(t=3.27,P=0.0404)及克隆形成(t=10.98,P=0.0001),而DOCK2敲低则增强上述能力(t=−1.94,P=0.0401;t=−9.14,P=0.0002;t=−3.95,P=0.0149)。

结论

FN1和DOCK2通过调控肿瘤免疫微环境影响结肠癌进展及预后,FN1为风险因子,DOCK2为保护因子,可能成为免疫治疗潜在靶点及预后分层标志物。

Objective

To investigate the characteristics of the tumor immune microenvironment in colon cancer, identify key immune-related genes, and evaluate their prognostic value, thereby providing evidence for immunotherapy target screening and prognostic stratification.

Methods

Based on transcriptomic and somatic mutation data from 514 colon cancer patients in the TCGA database, CIBERSORT and ESTIMATE algorithms were used to calculate immune score, stromal score, and ESTIMATE score. The associations between these scores and patients’ clinical outcomes (e.g., overall survival) as well as various clinicopathological parameters were statistically evaluated. Differentially expressed genes (DEGs) were identified using the limma package and functionally annotated through GO/KEGG enrichment analyses. Somatic mutation analysis was used to identify differentially mutated genes (DMGs), which were cross-analyzed with DEGs to identify key genes associated with tumor-infiltrating immune cells and prognosis. Clinical data and cellular experiments were used to validate the results.

Results

A high immune score was significantly positively correlated with overall survival in colon cancer patients (low/high immune score groups: 140, 51, 17, 7, 3 vs. 309, 93, 15, 5, 2; χ2=6.45, P=0.011), and the immune score significantly decreased with tumor stage progression. A total of 627 immune-related DEGs were identified, mainly enriched in immune pathways such as cytokine–cytokine receptor interaction. Combined with mutation analysis, FN1 and DOCK2 were identified as intersecting key genes with both differential expression and mutation: high expression of FN1 was associated with poor prognosis (P=0.011), increased with tumor stage, and was significantly positively correlated with lymph node and distant metastasis; high expression of DOCK2 had a protective effect (P=0.075), decreased with stage progression, and was negatively correlated with distant metastasis. Experiments showed that FN1 was significantly overexpressed in colon cancer tissues and peripheral blood (P=0.0257, 0.0004), while DOCK2 was significantly under expressed (P=0.0260, P<0.0001). Functional experiments demonstrated that knockdown of FN1 significantly inhibited colorectal cancer cell proliferation (48 h: t=3.58, P=0.0006; 60 h: t=3.66, P=0.0005), invasion (t=3.27, P=0.0404), and colony formation (t=10.98, P=0.0001). In contrast, DOCK2 knockdown promoted these malignant phenotypes (t=−1.94, P=0.0401; t=−9.14, P=0.0002; t=−3.95, P=0.0149).

Conclusion

FN1 and DOCK2 regulate colon cancer progression and prognosis by modulating the tumor immune microenvironment. FN1 serves as a risk factor, while DOCK2 acts as a protective factor, potentially serving as novel targets for immunotherapy and biomarkers for prognostic stratification.

表1 干扰RNA序列
图1 结肠癌患者免疫评分、间质评分和ESTIMATE评分的Kaplan-Meier生存分析和与临床病理特征的相关性分析。1A~1C:免疫评分、间质评分和ESTIMATE评分的Kaplan-Meier生存分析;1D~1F:评分与临床分期的相关性分析;1G~1I:评分与T分期的相关性分析;1J~1L:评分与N分期的相关性分析;1M~1O:评分与M分期的相关性分析
图2 高免疫和低免疫样本的DEGs识别与富集分析。2A:火山图筛选DEGs;2B:差异最显著的前二十个DEGs的热图;2C:DEGs的GO分析;2D:DEGs的KEGG分析
图3 结肠癌患者高、低免疫组免疫细胞分布特征及差异对比。3A:高、低免疫组中各类免疫细胞的比例分布;3B:结肠癌患者免疫细胞比例分布的箱线图;3C:高、低免疫组各类免疫细胞比例分布的箱线图与差异性分析;3D:高、低免疫组各类免疫细胞比例分布的热图
图4 结肠癌患者DMGs的识别及关键突变基因与免疫微环境关联分析。4A:高免疫组前30个高频突变基因分布条形图;4B:低免疫组前30个高频突变基因分布条形图;4C:DEGs和DMGs重叠的维恩图;4D~4E:DMGs的基因突变频率对比图
图5 FN1、DOCK2的Kaplan-Meier生存分析和与临床病理特征的相关性分析以及与TICs的关联性分析。5A~5B:FN1和DOCK2的Kaplan-Meier生存分析;5C~5D:FN1和DOCK2在对照和CC患者的表达差异性分析;5E~5H:FN1与临床分期和TNM分期的相关性分析;5I~5L:DOCK2与临床分期和TNM分期的相关性分析;5M:FN1、DOCK2与TICs的关联指数热图;5N~5P:与FN1强相关的TICs的散点图;5Q~5T:与DOCK2强相关的TICs的散点图
图6 FN1和DOCK2的转录组数据验证及体外功能验证。6A:结肠癌患者及对照人群外周血样收集示意图;6B:结肠癌基因改变火山图;6C:Wiki信号通路富集图;6D:结肠癌患者GSEA图;6E:结直肠癌外周血FN1及DOCK2相对表达量;6F:结直肠癌组织FN1及DOCK2相对表达量;6G:HPA数据库FN1及DOCK2生存曲线;6H:HPA数据库FN1及DOCK2免疫组化;6I:敲低FN1及DOCK2对结肠癌细胞增殖能力的影响;6J:敲低FN1及DOCK2对结肠癌细胞侵袭能力的影响;6K:敲低FN1及DOCK2对结肠癌细胞集落形成能力的影响
[1]
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.
[2]
张晓玲,范文轩,杜云毅, 等. 微卫星稳定/错配修复完整型结直肠癌的免疫联合治疗进展[J]. 中华肿瘤杂志, 2024, 46(8): 725-736.
[3]
Chen Y, Wang D, Li Y, et al. Spatiotemporal single-cell analysis decodes cellular dynamics underlying different responses to immunotherapy in colorectal cancer[J]. Cancer Cell, 2024, 42(7): 1268-1285.e7.
[4]
Wang H, Zhang J, Li H, et al. FN1 is a prognostic biomarker and correlated with immune infiltrates in gastric cancers[J]. Front Oncol, 2022, 12: 918719.
[5]
Ji L, Xu S, Luo H, et al. Insights from DOCK2 in cell function and pathophysiology[J]. Front Mol Biosci, 2022, 9: 997659.
[6]
Liu XH, Wang GR, Zhong NN, et al. Multi-omics in immunotherapy research for HNSCC: present situation and future perspectives[J]. NPJ Precis Oncol, 2025, 9(1): 93.
[7]
Sun CP, Lan HR, Fang XL, et al. Organoid models for precision cancer immunotherapy[J]. Front Immunol, 2022, 13: 770465.
[8]
Bae JM, Yoo SY, Kim JH, et al. Immune landscape and biomarkers for immuno-oncology in colorectal cancers[J]. J Pathol Transl Med, 2020, 54(5): 351-360.
[9]
Hsieh WC, Budiarto BR, Wang YF, et al. Spatial multi-omics analyses of the tumor immune microenvironment[J]. J Biomed Sci, 2022, 29(1): 96.
[10]
Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer[J]. Clin Cancer Res, 2010, 16(11): 2927-2931.
[11]
Peng D, Fu M, Wang M, et al. Targeting TGF-β signal transduction for fibrosis and cancer therapy[J]. Mol Cancer, 2022, 21(1): 104.
[12]
Du Q, An Q, Zhang J, et al. Unravelling immune microenvironment features underlying tumor progression in the single-cell era[J]. Cancer Cell Int, 2024, 24(1): 143.
[1] 杨春燕, 周晓苹. 机器人辅助技术在腹腔镜结直肠癌根治术中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 584-588.
[2] 雷世杰, 胡饶, 彭鸿, 马俊伟, 高石亮, 晏科金. 头侧-中央混合入路腹腔镜根治术治疗右半结肠癌的临床分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 417-420.
[3] 刘新锋, 邓煜麟, 刘孝德, 闫道先, 石双胜, 黄德成, 刘悦, 刘学斌, 许朋, 董传江. 肥大细胞免疫球蛋白样受体1在肾透明细胞癌中的表达及临床意义[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 483-491.
[4] 谭廷武, 张平新, 夏成兴, 杨德林. 单细胞测序技术在前列腺癌免疫治疗中的应用现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 508-513.
[5] 陈明付, 王庆惠, 纪辉涛, 陈银珍, 余小娟, 陈怀章, 赵虎, 王瑜. 基于CiteSpace 对结直肠癌铁死亡研究现状的可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 179-189.
[6] 鲁旭, 李华. 结直肠癌肝转移肝移植治疗研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 508-514.
[7] 中国医师协会结直肠肿瘤专业委员会术中放疗协作组. 结直肠癌术中放疗专家共识(2025版)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 299-306.
[8] 中国医师协会结直肠肿瘤专业委员会. 结直肠癌卵巢转移诊疗专家共识(2025版)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 307-318.
[9] 黄菊, 王猛, 韩冬. 双氢青蒿素通过JAK2/STAT3信号通路调节结直肠癌细胞的增殖、迁移、凋亡和免疫相关分子研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 319-332.
[10] 中国医师协会结直肠肿瘤专业委员会免疫学组. 结直肠癌免疫治疗专家共识(2025版)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 289-298.
[11] 陈劲强, 张军明, 黄勇山, 段金元. 腹部无辅助切口经横结肠拖出标本的腹腔镜右半结肠癌根治术一例(附视频)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 284-288.
[12] 洪敏, 许建峰, 丰陈. 内脏型肥胖对结直肠癌根治术患者术后感染并发症的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 199-204.
[13] 孟凡涛, 刘慧林, 杨爽. 老年结直肠癌组织RAB7A 表达与其临床病理特征及肝转移的关系[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 205-209.
[14] 吴娟娟, 武海龙. 监测术前NLR、PLR 及SII 水平对全身麻醉下结直肠癌根治术后并发肠梗阻的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 214-218.
[15] 王雅琪, 李杨亮, 路萍. 定量和定性粪便免疫化学检测在结直肠癌及进展期腺瘤筛查中的应用[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 267-271.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?