切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2021, Vol. 10 ›› Issue (01) : 95 -98. doi: 10.3877/cma.j.issn.2095-3224.2021.01.015

所属专题: 文献

综述

肠道菌群失调与罹患结直肠癌风险的研究进展
朱成章1, 张维胜2, 杜斌斌2, 史新龙2, 王赫1, 刘志鹏3, 李晶晶3, 杨熊飞2,()   
  1. 1. 730000 甘肃中医药大学临床医学研究生院;730000 兰州,甘肃省人民医院肛肠科
    2. 730000 兰州,甘肃省人民医院肛肠科
    3. 730000 兰州,甘肃省人民医院肛肠科;750000 宁夏医科大学临床医学研究生院
  • 收稿日期:2020-05-13 出版日期:2021-02-25
  • 通信作者: 杨熊飞
  • 基金资助:
    甘肃省科学技术厅青年科技基金资助项目(No. 17JR5RA031); 甘肃省兰州市科技发展指导性计划资助项目(No. 2019-ZD-103)

Progress in the study of imbalance of intestinal flora and the risk of colorectal cancer

Chengzhang Zhu1, Weisheng Zhang2, Binbin Du2, Xinlong Shi2, He Wang1, Zhipeng Liu3, Jingjing Li3, Xiongfei Yang2,()   

  1. 1. Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China; Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
    2. Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
    3. Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou 730000, China; Department of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, China
  • Received:2020-05-13 Published:2021-02-25
  • Corresponding author: Xiongfei Yang
引用本文:

朱成章, 张维胜, 杜斌斌, 史新龙, 王赫, 刘志鹏, 李晶晶, 杨熊飞. 肠道菌群失调与罹患结直肠癌风险的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2021, 10(01): 95-98.

Chengzhang Zhu, Weisheng Zhang, Binbin Du, Xinlong Shi, He Wang, Zhipeng Liu, Jingjing Li, Xiongfei Yang. Progress in the study of imbalance of intestinal flora and the risk of colorectal cancer[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2021, 10(01): 95-98.

结直肠癌(CRC)是最常见的恶性肿瘤之一,其发生和发展的原因尚不清楚,多项研究结果认为是生活方式、饮食习惯、遗传因素和环境因素等共同作用的结果。肠道菌群在生理条件下保持动态平衡,当这种平衡被破坏时,整个微生态系统将发生重大变化,各种肠道菌群及其代谢产物可直接或间接地促进结肠直肠癌的发生和发展。此外,饮食作为环境因素对肠道菌群的组成和功能有着重要的影响,饮食中的纤维和蛋白含量是主要原因,其影响主要是由微生物代谢产物介导的。在这篇综述中,笔者将从结直肠癌发生的机制、肠道菌群的代谢作用和饮食干预这三个角度概述肠道菌群失调与罹患结直肠癌风险的研究进展。

Colorectal cancer (CRC) is one of the most common malignancies. The cause of its development and progression is unknown, a number of studies have concluded that lifestyle, diet, genetic and environmental factors all play a role. Intestinal flora maintains a dynamic balance under physiological conditions. When this balance is disturbed, the whole microecosystem will undergo major changes, and various intestinal flora and their metabolites can directly or indirectly promote the occurrence and development of colorectal cancer. In addition, diet, as an environmental factor, has an important effect on the composition and function of intestinal flora. The fiber and protein content in the diet is the main reason, and its influence is mainly mediated by microbial metabolites. In this review, we will summarize the research progress on the imbalance of intestinal flora and the risk of colorectal cancer from three perspectives: the mechanism of colorectal cancer, the metabolic effect of intestinal flora, and dietary intervention.

[2]
Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases [J]. BMC Immunol, 2017, 18(1): 2.
[3]
Xu Z, Knight R. Dietary effects on human gut microbiome diversity [J]. Br J Nutr, 2015, 113 Suppl(Suppl0): S1-S5.
[4]
Liang Q, Chiu J, Chen Y, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer [J]. Clin Cancer Res, 2017, 23(8): 2061-2070.
[5]
Yang J, Yu J. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get [J]. Protein Cell, 2018, 9(5): 474-487.
[6]
O'Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer [J]. Nat Rev Gastroenterol Hepatol, 2016, 13(12): 691-706.
[7]
Tjalsma H, Boleij A, Marchesi JR, et al. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects [J]. Nat Rev Microbiol, 2012, 10(8): 575-582.

URL    
[8]
Beyer-Sehlmeyer G, Glei M, Hartmann E, et al. Butyrate is only one of several growth inhibitors produced during gut flora-mediated fermentation of dietary fibre sources [J]. Br J Nutr, 2003, 90(6): 1057-1070.
[9]
Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut [J]. Mucosal Immunol, 2017, 10(1): 18-26.
[10]
赵日升,曹蕾,于君. 无菌鼠模型在结直肠癌研究中的应用 [J]. 中国实验动物学报, 2017, 25(6): 658-662.
[11]
Ding C, Tang W, Fan X, et al. Intestinal microbiota: a novel perspective in colorectal cancer biotherapeutics [J]. Onco Targets Ther, 2018, 11: 4797-4810.
[12]
Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut [J]. Mucosal Immunol, 2017, 10(1): 18-26.
[13]
Zackular JP, Baxter NT, Chen GY, et al. Manipulation of the gut microbiota reveals role in colon tumorigenesis [J]. mSphere, 2015, 1(1): e00001-15.
[14]
Zackular JP, Baxter NT, Iverson KD, et al. The gut microbiome modulates colon tumorigenesis [J]. mBio, 2013, 4(6): e00692-13.
[15]
Pickard JM, Zeng MY, Caruso R, et al. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease [J]. Immunol Rev, 2017, 279(1): 70-89.
[16]
Han S, Gao J, Zhou Q, et al. Role of intestinal flora in colorectal cancer from the metabolite perspective: a systematic review [J]. Cancer Manag Res, 2018, 10: 199-206.
[17]
Romani L, Zelante T, Palmieri M, et al. The cross-talk between opportunistic fungi and the mammalian host via microbiota's metabolism [J]. Semin Immunopathol, 2015, 37(2): 163-171.
[18]
杨佳,于君. 饮食、肠道微生态与结直肠癌 [J/CD]. 中华结直肠疾病电子杂志, 2019, 8(6): 541-545.
[19]
Ribel-Madsen A, Ribel-Madsen R, Brøns C, et al. Plasma acylcarnitine profiling indicates increased fatty acid oxidation relative to tricarboxylic acid cycle capacity in young, healthy low birth weight men [J]. Physiol Rep, 2016, 4(19): e12977.
[20]
Kim MH, Kang SG, Park JH, et al. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice [J]. Gastroenterology, 2013, 145(2): 396-406.

URL    
[21]
Bindels LB, Porporato P, Dewulf EM, et al. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver [J]. Br J Cancer, 2012, 107(8): 1337-1344.
[22]
Lewis K, Lutgendorff F, Phan V, et al. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate [J]. Inflamm Bowel Dis, 2010, 16(7): 1138-1148.
[23]
Peng L, Li ZR, Green RS, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers [J]. J Nutr, 2009, 139(9): 1619-1625.
[24]
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells [J]. Nature, 2013, 504(7480): 446-450.

URL    
[25]
Ryan M, Kochunov P, Rowland LM, et al. Lipid Metabolism, Abdominal Adiposity, and Cerebral Health in the Amish [J]. Obesity (Silver Spring), 2017, 25(11): 1876-1880.
[26]
Giang TM, Gaucel S, Brestaz P, et al. Dynamic modeling of in vitro lipid digestion: individual fatty acid release and bioaccessibility kinetics [J]. Food Chem, 2016, 194: 1180-1188.
[27]
Shen C, Xue M, Qiu H, et al. Insertion of neurotransmitters into a lipid bilayer membrane and its implication on membrane stability: a molecular dynamics study [J]. Chemphyschem, 2017, 18(6): 626-633.
[28]
Ridlon JM, Wolf PG, Gaskins HR. Taurocholic acid metabolism by gut microbes and colon cancer [J].Gut Microbes, 2016, 7(3): 201-215.
[29]
Savari S, Vinnakota K, Zhang Y, et al. Cysteinyl leukotrienes and their receptors: bridging inflammation and colorectal cancer [J].World J Gastroenterol, 2014, 20(4): 968-977.
[30]
Wang D, DuBois RN. An inflammatory mediator, prostaglandin E2, in colorectal cancer [J].Cancer J, 2013, 19(6): 502-510.

URL    
[31]
Kai M, Yamamoto E, Sato A, et al. Epigenetic silencing of diacylglycerol kinase gamma in colorectal cancer [J].Mol Carcinog, 2017, 56(7): 1743-1752.
[32]
Ma N, Tian Y, Wu Y, et al. Contributions of the Interaction Between Dietary Protein and Gut Microbiota to Intestinal Health [J].Curr Protein Pept Sci, 2017, 18(8): 795-808.
[33]
Espejo-Herrera N, Gràcia-Lavedan E, Boldo E, et al. Colorectal cancer risk and nitrate exposure through drinking water and diet [J].Int J Cancer, 2016, 139(2): 334-346.
[1]
Leystra AA, Clapper ML. Gut microbiota influences experimental outcomes in mouse models of colorectal cancer [J]. Genes (Basel), 2019, 10(11): 900.
[34]
Bingham SA, Pignatelli B, Pollock JR, et al. Does increased endogenous formation of N-nitroso compounds in the human colon explain the association between red meat and colon cancer? [J].Carcinogenesis, 1996, 17(3): 515-523.
[35]
Yang T, Owen JL, Lightfoot YL, et al. Microbiota impact on the epigenetic regulation of colorectal cancer [J].Trends Mol Med, 2013, 19(12): 714-725.
[36]
Kumar M, Nagpal R, Verma V, et al. Probiotic metabolites as epigenetic targets in the prevention of colon cancer [J].Nutr Rev, 2013, 71(1): 23-34.
[37]
Ohgaki H, Kusama K, Matsukura N, et al. Carcinogenicity in mice of a mutagenic compound, 2-amino-3-methylimidazo[4,5-f]quinoline, from broiled sardine, cooked beef and beef extract [J].Carcinogenesis, 1984, 5(7): 921-924.
[38]
Hamer HM, Jonkers D, Venema K, et al. Review article: the role of butyrate on colonic function [J]. Aliment Pharmacol Ther, 2008, 27(2):104-119.
[39]
Fung KY, Cosgrove L, Lockett T, et al. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate [J]. Br J Nut, 2012, 108(5): 820-831.
[40]
Beaumont M, Portune KJ, Steuer N, et al. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans [J].Am J Clin Nutr, 2017, 106(4): 1005-1019.
[41]
Narisawa T, Magadia NE, Weisburger JH, et al. Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N'-nitro-N-nitrosoguanidine in rats [J]. J Natl Cancer Inst, 1974, 53(4): 1093-1097.
[42]
Liu L, Zhuang W, Wang RQ, et al. Is dietary fat associated with the risk of colorectal cancer? A meta-analysis of 13 prospective cohort studies [J]. Eur J Nutr, 2011, 50(3): 173-184.

URL    
[43]
Senok AC, Ismaeel AY, Botta GA. Probiotics: facts and myths [J]. Clin Microbiol Infect, 2005, 11(12): 958-966.
[44]
Kahouli I, Tomaro-Duchesneau C, Prakash S. Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives [J]. J Med Microbiol, 2013, 62(Pt 8): 1107-1123.
[45]
Hsieh CY, Osaka T, Moriyama E, et al. Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum [J]. Physiol Rep, 2015, 3(3): e12327.
[46]
Blackwood BP, Yuan CY, Wood DR, et al. Probiotic lactobacillus species strengthen intestinal barrier function and tight junction integrity in experimental necrotizing enterocolitis [J]. J Probiotics Health, 2017, 5(1): 159.
[47]
Mojka K. Probiotics, prebiotics and synbiotics—Characteristics and functions [J]. Probl Hig Epidemiol, 2014, 95: 541-549.
[1] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[2] 罗青杉, 梅海涛, 郝家领, 蔡锦锋, 周润楷, 温玉刚. 连接蛋白43通过调控细胞周期抑制结直肠癌的增殖机制研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 344-349.
[3] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[4] 李玲, 刘亚, 李培玲, 张秀敏, 李萍. 直肠癌患者术后肠道菌群的变化与抑郁症相关性研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 607-610.
[5] 方道成, 唐春华, 胡媛媛. 肠道菌群对草酸钙肾结石形成的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 509-513.
[6] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[7] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[8] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[9] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[10] 赵磊, 刘文志, 林峰, 于剑, 孙铭骏, 崔佑刚, 张旭, 衣宇鹏, 于宝胜, 冯宁. 深部热疗在改善结直肠癌术后辅助化疗副反应及生活质量中的作用研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 488-493.
[11] 黄海洋, 邝永龙, 陈嘉胜. 基层医院结直肠肿瘤经自然腔道取标本手术30 例分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 510-518.
[12] 任佳琪, 刁德昌, 何自衍, 张雪阳, 唐新, 李文娟, 李洪明, 卢新泉, 易小江. 网膜融合线导向的脾曲游离技术在左半结肠癌根治术中的应用[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 362-367.
[13] 张迪, 王春霞, 张学东, 李发馨, 庞淅文, 陈一锋, 张维胜, 王涛. 梗阻性左半结直肠癌自膨式金属支架置入后行腹腔镜手术与开腹手术的短期临床疗效比较[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 375-380.
[14] 宋燕秋, 戚桂艳, 杨双双, 周萍. 重症急性胰腺炎肠道菌群特征及早期肠内营养联合微生态制剂治疗的临床价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 442-447.
[15] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
阅读次数
全文


摘要