切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2021, Vol. 10 ›› Issue (01) : 95 -98. doi: 10.3877/cma.j.issn.2095-3224.2021.01.015

所属专题: 文献

综述

肠道菌群失调与罹患结直肠癌风险的研究进展
朱成章1, 张维胜2, 杜斌斌2, 史新龙2, 王赫1, 刘志鹏3, 李晶晶3, 杨熊飞2,()   
  1. 1. 730000 甘肃中医药大学临床医学研究生院;730000 兰州,甘肃省人民医院肛肠科
    2. 730000 兰州,甘肃省人民医院肛肠科
    3. 730000 兰州,甘肃省人民医院肛肠科;750000 宁夏医科大学临床医学研究生院
  • 收稿日期:2020-05-13 出版日期:2021-02-25
  • 通信作者: 杨熊飞
  • 基金资助:
    甘肃省科学技术厅青年科技基金资助项目(No. 17JR5RA031); 甘肃省兰州市科技发展指导性计划资助项目(No. 2019-ZD-103)

Progress in the study of imbalance of intestinal flora and the risk of colorectal cancer

Chengzhang Zhu1, Weisheng Zhang2, Binbin Du2, Xinlong Shi2, He Wang1, Zhipeng Liu3, Jingjing Li3, Xiongfei Yang2,()   

  1. 1. Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China; Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
    2. Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
    3. Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou 730000, China; Department of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, China
  • Received:2020-05-13 Published:2021-02-25
  • Corresponding author: Xiongfei Yang
引用本文:

朱成章, 张维胜, 杜斌斌, 史新龙, 王赫, 刘志鹏, 李晶晶, 杨熊飞. 肠道菌群失调与罹患结直肠癌风险的研究进展[J]. 中华结直肠疾病电子杂志, 2021, 10(01): 95-98.

Chengzhang Zhu, Weisheng Zhang, Binbin Du, Xinlong Shi, He Wang, Zhipeng Liu, Jingjing Li, Xiongfei Yang. Progress in the study of imbalance of intestinal flora and the risk of colorectal cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2021, 10(01): 95-98.

结直肠癌(CRC)是最常见的恶性肿瘤之一,其发生和发展的原因尚不清楚,多项研究结果认为是生活方式、饮食习惯、遗传因素和环境因素等共同作用的结果。肠道菌群在生理条件下保持动态平衡,当这种平衡被破坏时,整个微生态系统将发生重大变化,各种肠道菌群及其代谢产物可直接或间接地促进结肠直肠癌的发生和发展。此外,饮食作为环境因素对肠道菌群的组成和功能有着重要的影响,饮食中的纤维和蛋白含量是主要原因,其影响主要是由微生物代谢产物介导的。在这篇综述中,笔者将从结直肠癌发生的机制、肠道菌群的代谢作用和饮食干预这三个角度概述肠道菌群失调与罹患结直肠癌风险的研究进展。

Colorectal cancer (CRC) is one of the most common malignancies. The cause of its development and progression is unknown, a number of studies have concluded that lifestyle, diet, genetic and environmental factors all play a role. Intestinal flora maintains a dynamic balance under physiological conditions. When this balance is disturbed, the whole microecosystem will undergo major changes, and various intestinal flora and their metabolites can directly or indirectly promote the occurrence and development of colorectal cancer. In addition, diet, as an environmental factor, has an important effect on the composition and function of intestinal flora. The fiber and protein content in the diet is the main reason, and its influence is mainly mediated by microbial metabolites. In this review, we will summarize the research progress on the imbalance of intestinal flora and the risk of colorectal cancer from three perspectives: the mechanism of colorectal cancer, the metabolic effect of intestinal flora, and dietary intervention.

[2]
Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases [J]. BMC Immunol, 2017, 18(1): 2.
[3]
Xu Z, Knight R. Dietary effects on human gut microbiome diversity [J]. Br J Nutr, 2015, 113 Suppl(Suppl0): S1-S5.
[4]
Liang Q, Chiu J, Chen Y, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer [J]. Clin Cancer Res, 2017, 23(8): 2061-2070.
[5]
Yang J, Yu J. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get [J]. Protein Cell, 2018, 9(5): 474-487.
[6]
O'Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer [J]. Nat Rev Gastroenterol Hepatol, 2016, 13(12): 691-706.
[7]
Tjalsma H, Boleij A, Marchesi JR, et al. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects [J]. Nat Rev Microbiol, 2012, 10(8): 575-582.

URL    
[8]
Beyer-Sehlmeyer G, Glei M, Hartmann E, et al. Butyrate is only one of several growth inhibitors produced during gut flora-mediated fermentation of dietary fibre sources [J]. Br J Nutr, 2003, 90(6): 1057-1070.
[9]
Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut [J]. Mucosal Immunol, 2017, 10(1): 18-26.
[10]
赵日升,曹蕾,于君. 无菌鼠模型在结直肠癌研究中的应用 [J]. 中国实验动物学报, 2017, 25(6): 658-662.
[11]
Ding C, Tang W, Fan X, et al. Intestinal microbiota: a novel perspective in colorectal cancer biotherapeutics [J]. Onco Targets Ther, 2018, 11: 4797-4810.
[12]
Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut [J]. Mucosal Immunol, 2017, 10(1): 18-26.
[13]
Zackular JP, Baxter NT, Chen GY, et al. Manipulation of the gut microbiota reveals role in colon tumorigenesis [J]. mSphere, 2015, 1(1): e00001-15.
[14]
Zackular JP, Baxter NT, Iverson KD, et al. The gut microbiome modulates colon tumorigenesis [J]. mBio, 2013, 4(6): e00692-13.
[15]
Pickard JM, Zeng MY, Caruso R, et al. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease [J]. Immunol Rev, 2017, 279(1): 70-89.
[16]
Han S, Gao J, Zhou Q, et al. Role of intestinal flora in colorectal cancer from the metabolite perspective: a systematic review [J]. Cancer Manag Res, 2018, 10: 199-206.
[17]
Romani L, Zelante T, Palmieri M, et al. The cross-talk between opportunistic fungi and the mammalian host via microbiota's metabolism [J]. Semin Immunopathol, 2015, 37(2): 163-171.
[18]
杨佳,于君. 饮食、肠道微生态与结直肠癌 [J/CD]. 中华结直肠疾病电子杂志, 2019, 8(6): 541-545.
[19]
Ribel-Madsen A, Ribel-Madsen R, Brøns C, et al. Plasma acylcarnitine profiling indicates increased fatty acid oxidation relative to tricarboxylic acid cycle capacity in young, healthy low birth weight men [J]. Physiol Rep, 2016, 4(19): e12977.
[20]
Kim MH, Kang SG, Park JH, et al. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice [J]. Gastroenterology, 2013, 145(2): 396-406.

URL    
[21]
Bindels LB, Porporato P, Dewulf EM, et al. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver [J]. Br J Cancer, 2012, 107(8): 1337-1344.
[22]
Lewis K, Lutgendorff F, Phan V, et al. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate [J]. Inflamm Bowel Dis, 2010, 16(7): 1138-1148.
[23]
Peng L, Li ZR, Green RS, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers [J]. J Nutr, 2009, 139(9): 1619-1625.
[24]
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells [J]. Nature, 2013, 504(7480): 446-450.

URL    
[25]
Ryan M, Kochunov P, Rowland LM, et al. Lipid Metabolism, Abdominal Adiposity, and Cerebral Health in the Amish [J]. Obesity (Silver Spring), 2017, 25(11): 1876-1880.
[26]
Giang TM, Gaucel S, Brestaz P, et al. Dynamic modeling of in vitro lipid digestion: individual fatty acid release and bioaccessibility kinetics [J]. Food Chem, 2016, 194: 1180-1188.
[27]
Shen C, Xue M, Qiu H, et al. Insertion of neurotransmitters into a lipid bilayer membrane and its implication on membrane stability: a molecular dynamics study [J]. Chemphyschem, 2017, 18(6): 626-633.
[28]
Ridlon JM, Wolf PG, Gaskins HR. Taurocholic acid metabolism by gut microbes and colon cancer [J].Gut Microbes, 2016, 7(3): 201-215.
[29]
Savari S, Vinnakota K, Zhang Y, et al. Cysteinyl leukotrienes and their receptors: bridging inflammation and colorectal cancer [J].World J Gastroenterol, 2014, 20(4): 968-977.
[30]
Wang D, DuBois RN. An inflammatory mediator, prostaglandin E2, in colorectal cancer [J].Cancer J, 2013, 19(6): 502-510.

URL    
[31]
Kai M, Yamamoto E, Sato A, et al. Epigenetic silencing of diacylglycerol kinase gamma in colorectal cancer [J].Mol Carcinog, 2017, 56(7): 1743-1752.
[32]
Ma N, Tian Y, Wu Y, et al. Contributions of the Interaction Between Dietary Protein and Gut Microbiota to Intestinal Health [J].Curr Protein Pept Sci, 2017, 18(8): 795-808.
[33]
Espejo-Herrera N, Gràcia-Lavedan E, Boldo E, et al. Colorectal cancer risk and nitrate exposure through drinking water and diet [J].Int J Cancer, 2016, 139(2): 334-346.
[1]
Leystra AA, Clapper ML. Gut microbiota influences experimental outcomes in mouse models of colorectal cancer [J]. Genes (Basel), 2019, 10(11): 900.
[34]
Bingham SA, Pignatelli B, Pollock JR, et al. Does increased endogenous formation of N-nitroso compounds in the human colon explain the association between red meat and colon cancer? [J].Carcinogenesis, 1996, 17(3): 515-523.
[35]
Yang T, Owen JL, Lightfoot YL, et al. Microbiota impact on the epigenetic regulation of colorectal cancer [J].Trends Mol Med, 2013, 19(12): 714-725.
[36]
Kumar M, Nagpal R, Verma V, et al. Probiotic metabolites as epigenetic targets in the prevention of colon cancer [J].Nutr Rev, 2013, 71(1): 23-34.
[37]
Ohgaki H, Kusama K, Matsukura N, et al. Carcinogenicity in mice of a mutagenic compound, 2-amino-3-methylimidazo[4,5-f]quinoline, from broiled sardine, cooked beef and beef extract [J].Carcinogenesis, 1984, 5(7): 921-924.
[38]
Hamer HM, Jonkers D, Venema K, et al. Review article: the role of butyrate on colonic function [J]. Aliment Pharmacol Ther, 2008, 27(2):104-119.
[39]
Fung KY, Cosgrove L, Lockett T, et al. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate [J]. Br J Nut, 2012, 108(5): 820-831.
[40]
Beaumont M, Portune KJ, Steuer N, et al. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans [J].Am J Clin Nutr, 2017, 106(4): 1005-1019.
[41]
Narisawa T, Magadia NE, Weisburger JH, et al. Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N'-nitro-N-nitrosoguanidine in rats [J]. J Natl Cancer Inst, 1974, 53(4): 1093-1097.
[42]
Liu L, Zhuang W, Wang RQ, et al. Is dietary fat associated with the risk of colorectal cancer? A meta-analysis of 13 prospective cohort studies [J]. Eur J Nutr, 2011, 50(3): 173-184.

URL    
[43]
Senok AC, Ismaeel AY, Botta GA. Probiotics: facts and myths [J]. Clin Microbiol Infect, 2005, 11(12): 958-966.
[44]
Kahouli I, Tomaro-Duchesneau C, Prakash S. Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives [J]. J Med Microbiol, 2013, 62(Pt 8): 1107-1123.
[45]
Hsieh CY, Osaka T, Moriyama E, et al. Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum [J]. Physiol Rep, 2015, 3(3): e12327.
[46]
Blackwood BP, Yuan CY, Wood DR, et al. Probiotic lactobacillus species strengthen intestinal barrier function and tight junction integrity in experimental necrotizing enterocolitis [J]. J Probiotics Health, 2017, 5(1): 159.
[47]
Mojka K. Probiotics, prebiotics and synbiotics—Characteristics and functions [J]. Probl Hig Epidemiol, 2014, 95: 541-549.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[5] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[6] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[7] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[8] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[9] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[10] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[11] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[12] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[13] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[14] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[15] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
阅读次数
全文


摘要