切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2021, Vol. 10 ›› Issue (01) : 34 -44. doi: 10.3877/cma.j.issn.2095-3224.2021.01.005

所属专题: 文献

专家论坛

肠道菌群与结直肠癌
陈米芬1, 沈琳1, 李健1,()   
  1. 1. 100142 北京大学肿瘤医院暨北京市肿瘤防治研究所消化肿瘤内科 恶性肿瘤发病机制及转化研究教育部重点实验室
  • 收稿日期:2020-08-21 出版日期:2021-02-25
  • 通信作者: 李健

Gut microbiome and colorectal cancer

Mifen Chen1, Lin Shen1, Jian Li1,()   

  1. 1. Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
  • Received:2020-08-21 Published:2021-02-25
  • Corresponding author: Jian Li
引用本文:

陈米芬, 沈琳, 李健. 肠道菌群与结直肠癌[J]. 中华结直肠疾病电子杂志, 2021, 10(01): 34-44.

Mifen Chen, Lin Shen, Jian Li. Gut microbiome and colorectal cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2021, 10(01): 34-44.

近年来,肠道菌群在结直肠癌中的作用引起了广泛关注。越来越多的证据表明,肠道菌群与结直肠癌的发生、发展及治疗相关,潜在的致病菌和代谢标志物的发现将有助于结直肠癌的早期诊断和有效治疗。流行病学数据表明,不同地域人群结直肠癌发病率高低不一,西方化人群发病率普遍较高。西方化与非西方化人群有着不同的肠道菌群结构,因此考虑可能是饮食与环境差异等因素引起不同地域人群肠道菌群结构不同,一定程度上导致结直肠癌易感性的差异。为此,本文总结了不同地域/种族肠道菌群组成的特点以及与结直肠癌发生发展相关的肠道菌群及其代谢物,探讨肠道菌群在不同人群结直肠癌易感性中发挥的作用以及是否存在独立于地理来源的结直肠癌相关肠道菌群。

In recent years, the influence of gut microbiome on colorectal cancer has been widely concerned. Growing body of evidence indicates that gut microbiome is associated with the development and treatment of colorectal cancer, and the discovery of potentially pathogenic microbiome and metabolic biomarkers will help to early diagnosis and effective treatment of colorectal cancer. According to epidemiological data, the incidence of colorectal cancer varies regionally and is generally higher in westernized populations. Meanwhile, the composition of gut microbiome also has differences between westernized and non-westernized populations. Therefore, it is considered that factors such as diet and environment may cause regional differences in the composition of gut microbiome, which ultimately leads to regional differences in colorectal cancer susceptibility in a way. To this end, in this review we summarize the composition of gut microbiome of different regional/ethnic groups, as well as gut microbiome and metabolites related to the occurrence and development of colorectal cancer, with the purpose to explore the role of gut microbiome in colorectal cancer susceptibility in different population and the existence of colorectal cancer related gut microbiome independent of geographical sources.

表1 不同地域/种族健康人群肠道菌群特征
作者,年份 地域/民族 生活方式 样本量(例) 测序方法 肠道菌群特征
Qin,et al,2010年[13] 欧洲 工业化生活 124 16S rRNA 拟杆菌门和厚壁菌门丰度最高,核心菌群主要与复杂多糖的降解以及短链脂肪酸、必需氨基酸和维生素的合成有关
美国国立卫生研究院(NIH),2012年[10] 美国 工业化生活 242 16S rRNA 门水平上,多以拟杆菌门为主,少数以厚壁菌门为主;属水平上,以拟杆菌属为主;普遍存在与生命基础代谢相关的“核心”通路,如核糖体转录和翻译等
De,et al,2010年[14] 欧洲城镇儿童 工业化生活 15 16S rRNA 厚壁菌门和变形菌门丰度相对较高
非洲农村儿童

传统农业

生活

15 放线菌门和拟杆菌门丰度相对较高;含碳水化合物和木聚糖降解菌如普氏菌属、Xylanibacter、丁酸弧菌属和特征性密螺旋体属;短链脂肪酸相关菌丰度较高,但双歧杆菌丰度较低
Yatsunenko,et al,2012年[15] 美国 工业化生活 316 16S rRNA 肠道菌群多样性较低;富含单糖代谢
非洲马拉维、南美洲委内瑞拉 传统农业生活 215 两者间肠道菌群的差异明显小于二者与美国人群间的差异;富含淀粉酶等多糖代谢
Schnorr,et al,2014年[16];Rampelli,et al,2015年[17]* 意大利 工业化生活 16;11* 16S rDNA;鸟枪法测序 物种丰富度和多样性较低;富含单糖如葡萄糖、半乳糖和蔗糖及外毒素代谢
非洲坦桑尼亚哈扎族人 狩猎-采集生活 27 普氏菌属、密螺旋体和未分类的拟杆菌门细菌丰度较高,拟杆菌属丰度较低,未检测到双歧杆菌;富含短链脂肪酸代谢
Clemente, et al,2015年[18] 亚诺马米印第安人 半游牧式的狩猎生活 34 16S rRNA 物种多样性高;普氏菌属丰度较高,拟杆菌属丰度较低
Obregon,et al, 2015年[19] 美国 工业化生活 23 16S rRNA、鸟枪法测序 物种丰富度较低;以放线菌门为主
秘鲁 狩猎-采集和传统农业生活 56 以变形菌门为主;可检测到不属于致病性分支的密螺旋体属
Martínez,et al, 2015年[20] 美国 工业化生活 22 16S rRNA 与美国人群相比,新几内亚人群α多样性较高而β多样性较低
新几内亚 传统农业生活 40
Dehingia,et al, 2015年[21] 印度 传统农业生活 193 16S rDNA、下一代基因测序 参与碳水化合物代谢的普雷沃氏菌科、瘤胃菌科、毛螺菌科及真杆菌科丰度较高
Zhang,et al, 2015年[22] 中国多个省份与民族 传统农业生活 314 16S rRNA 门水平上,以厚壁菌门、拟杆菌门、变形菌门和放线菌门为主;属水平上,考拉杆菌属丰度最高;9个“核心”菌属在人群中共享,均与短链脂肪酸产生相关
Gomez,et al,2016年[23] 俾格米人 狩猎-采集生活 28 16S rRNA 普雷沃氏菌科、密螺旋体属和梭菌科丰度较高
班图人 传统农业生活 29 以厚壁菌门为主;糖和外源性物质代谢富集
Deschasaux,et al,2018年[24] 荷兰阿姆斯特丹六个最大的民族 工业化生活 2 084 16S rRNA 门水平上,厚壁菌门丰度最高,其次为拟杆菌们;属水平上,普氏菌属、粪杆菌属、拟杆菌属丰度最高,其中摩洛哥人、土耳其人、加纳人的肠道菌群以普氏菌属为主,非洲苏里南人、南亚苏里南人以拟杆菌属为主,而丹麦人则以梭菌目为主
Liao,et al,2018年[25] 居住在同一地区的瑶族、壮族和汉族人群 传统农业生活 47名汉族、28名壮族和59名瑶族成人 16S rDNA 拟杆菌属和普氏菌属在三个人群中丰度最高,其中巨单胞菌属和琥珀酸弧菌属分别是汉族和瑶族人群的特征性菌属
He,et al,2018年[26] 中国广东地区 传统农业生活 7 009 下一代基因测序 拟杆菌门、厚壁菌门和变形菌门丰度最高
Ayeni,et al,2018年[27] 非洲城镇尼日利亚 工业化生活 30 16S rRNA 拟杆菌属、双歧杆菌和粪杆菌属等丰度相对较高
非洲农村巴萨 传统农业生活 18 个体间差异相对较小;以纤维消化功能为主的细菌如普氏菌属、密螺旋体菌属、琥珀酸弧菌属、杆菌属和丁酸弧菌属等丰度较高
表2 不同地域/种族结直肠癌患者肠道菌群特征
作者,年份 地区 结直肠癌患者(例)/健康对照(例) 标本类型 测序方法 结直肠癌患者肠道菌群特征
Wang, et al, 2012年[42] 中国 46/56 粪便 16S rRNA 脆弱拟杆菌、肠球菌属、埃希氏菌属、克雷伯菌属、链球菌属、消化链球菌属↑;氏菌属、毛螺菌科等短链脂肪酸产生相关菌↓
Wu, et al,2013年[43] 中国 19/20 粪便 16S rRNA 拟杆菌属、梭杆菌属、弯曲杆菌、肠球菌科↑;氏菌属等短链脂肪酸产生相关菌↓
Ahn, et al, 2013年[44] 美国 47/94 粪便 16S rRNA 梭杆菌属、卟啉单胞菌属↑、梭菌纲↑
Zackular, et al, 2014年[45] 美国 30/30 粪便 16S rRNA 梭杆菌属、卟啉单胞菌属、肠杆菌科、紫单胞菌科↑;拟杆菌属、毛螺菌科等短链脂肪酸产生相关菌↓
Zeller, et al, 2014年[46] 法国 91/358 粪便 宏基因组测序 具核梭杆菌、口炎消化链球菌、不解糖卟啉单胞菌↑
Feng, et al, 2015年[47] 澳大利亚 41/55 粪便 宏基因组测序 多氏拟杆菌、普通拟杆菌、大肠杆菌、梭杆菌属↑;乳杆菌属、双歧杆菌属↓
Eklöf, et al, 2017年[48] 瑞典 39/66 粪便 qPCR Pks+大肠杆菌、具核梭杆菌↑
Liang, et al, 2017年[49] 中国 203/236 粪便 qPCR 具核梭杆菌、哈氏菌属↑、克拉鲁斯拟杆菌、肠道罗斯拜瑞氏菌↓
Flemer, et al, 2017年[50] 爱尔兰 59/56 粪便和组织 16S rRNA 拟杆菌属、氏菌属、瘤胃球菌属、颤杆菌克、卟啉单胞菌属、消化链球菌属、微小单胞菌属、梭杆菌属↑
Alomair, et al, 2018年[51] 沙特阿拉伯 29/29 组织 宏基因组测序 脆弱拟杆菌、消化链球菌、微小单胞菌↑
1
Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies[J]. Nature Reviews Gastroenterology & Hepatology, 2019, 16 (12): 713-732.
2
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66 (2): 115-132.
3
Gopalakrishnan V, Helmink BA, Spencer CN, et al. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy[J]. Cancer Cell, 2018, 33 (4): 570-580.
4
Valdes AM, Walter J, Segal E, et al. Role of the gut microbiota in nutrition and health[J]. BMJ, 2018, 361 (Suppl_1): k2179.
5
Chao A, Thun MJ, Connell CJ, et al. Meat consumption and risk of colorectal cancer[J]. Jama, 2005, 293 (2): 172-182.
6
O'Keefe SJD, Chung D, Mahmoud N, et al. Why do African Americans get more colon cancer than Native Africans?[J]. J Nutr, 2007, 137 (Suppl_1): 175S-182S.
7
O'Keefe SJD, Ou J, Aufreiter S, et al. Products of the colonic microbiota mediate the effects of diet on colon cancer risk[J]. J Nutr, 2009, 139 (11): 2044-2048.
8
Ou J, Carbonero F, Zoetendal EG, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans[J]. Am J Clin Nutr, 2013, 98 (1): 111-120.
9
Ocvirk S, Wilson AS, Posma JM, et al. A prospective cohort analysis of gut microbial co-metabolism in Alaska Native and rural African people at high and low risk of colorectal cancer [J]. Am J Clin Nutr, 2020, 111 (2): 406-419.
10
The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome [J]. Nature, 2012, 486 (7402): 207-214.
11
Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes [J]. Science, 2011, 334 (6052): 105-108.
12
Pasolli E, Asnicar F, Manara S, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle[J]. Cell, 2019, 176 (3): 649-662.e620.
13
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing [J]. Nature, 2010, 464 (7285): 59-65.
14
De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa[J]. Proc Natl Acad Sci USA, 2010, 107 (33): 14691-14696.
15
Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486 (7402): 222-227.
16
Schnorr SL, Candela M, Rampelli S, et al. Gut microbiome of the Hadza hunter-gatherers[J]. Nat Commun, 2014, 5: 3654.
17
Rampelli S, Schnorr SL, Consolandi C, et al. Metagenome sequencing of the hadza hunter-gatherer gut microbiota[J]. Current biology: CB, 2015, 25(13): 1682-1693.
18
Clemente JC, Pehrsson EC, Blaser MJ, et al. The microbiome of uncontacted Amerindians[J]. Science Advances, 2015, 1 (3): e1500183.
19
Obregon-Tito AJ, Tito RY, Metcalf J, et al. Subsistence strategies in traditional societies distinguish gut microbiomes[J]. Nat Commun, 2015, 6: 6505.
20
Martínez I, Stegen JC, Maldonado-Gómez MX, et al. The gut microbiota of rural papua new guineans: composition, diversity patterns, and ecological processes[J]. Cell Rep, 2015, 11(4): 527-538.
21
Dehingia M, Devi KT, Talukdar NC, et al. Gut bacterial diversity of the tribes of India and comparison with the worldwide data [J]. Sci Rep, 2015, 5: 18563.
22
Zhang J, Guo Z, Xue Z, et al. A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities [J]. The Isme Journal, 2015, 9(9): 1979-1990.
23
Gomez A, Petrzelkova KJ, Burns MB, et al. Gut microbiome of coexisting BaAka pygmies and bantu reflects gradients of traditional subsistence patterns[J]. Cell Rep, 2016, 14(9): 2142-2153.
24
Deschasaux M, Bouter KE, Prodan A, et al. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography[J]. Nat Med, 2018, 24(10): 1526-1531.
25
Liao M, Xie Y, Mao Y, et al. Comparative analyses of fecal microbiota in Chinese isolated Yao population, minority Zhuang and rural Han by 16sRNA sequencing[J]. Sci Rep, 2018, 8(1): 1142.
26
He Y, Wu W, Zheng HM, et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models[J]. Nat Med, 2018, 24(10): 1532-1535.
27
Ayeni FA, Biagi E, Rampelli S, et al. Infant and adult gut microbiome and metabolome in rural bassa and urban settlers from nigeria[J]. Cell Rep, 2018, 23(10): 3056-3067.
28
Vangay P, Johnson AJ, Ward TL, et al. US immigration westernizes the human gut microbiome[J]. Cell, 2018, 175(4): 962-972.e910.
29
Kaplan RC, Wang Z, Usyk M, et al. Gut microbiome composition in the Hispanic Community Health Study/Study of Latinos is shaped by geographic relocation, environmental factors, and obesity [J]. Genome Biol, 2019, 20(1): 219.
30
Sonnenburg ED, Sonnenburg JL. The ancestral and industrialized gut microbiota and implications for human health[J]. Nat Rev Microbiol, 2019, 17(6): 383-390.
31
Hansen MEB, Rubel MA, Bailey AG, et al. Population structure of human gut bacteria in a diverse cohort from rural Tanzania and Botswana[J]. Genome Biol, 2019, 20 (1): 16.
32
Nayfach S, Shi ZJ, Seshadri R, et al. New insights from uncultivated genomes of the global human gut microbiome[J]. Nature, 2019, 568 (7753): 505-510.
33
Almeida A, Mitchell AL, Boland M, et al. A new genomic blueprint of the human gut microbiota[J]. Nature, 2019, 568(7753): 499-504.
34
Smits SA, Leach J, Sonnenburg ED, et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania[J]. Science, 2017, 357(6353): 802-806.
35
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7484): 559-563.
36
Lang JM, Pan C, Cantor RM, et al. Impact of individual traits, saturated fat, and protein source on the gut microbiome[J]. MBio, 2018, 9(6): e01604-01618.
37
O'Keefe SJ, Li JV, Lahti L, et al. Fat, fibre and cancer risk in African Americans and rural Africans[J]. Nat Commun, 2015, 6: 6342.
38
Bowyer RCE, Jackson MA, Le Roy CI, et al. Socioeconomic status and the gut microbiome: a twinsuk cohort study[J]. Microorganisms, 2019, 7 (1): 17.
39
Goodrich JK, Davenport ER, Beaumont M, et al. Genetic determinants of the gut microbiome in UK twins[J]. Cell Host & Microbe, 2016, 19(5): 731-743.
40
Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome[J]. Cell, 2014, 159(4): 789-799.
41
Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota[J]. Nature, 2018, 555(7695): 210-215.
42
Wang T, Cai G, Qiu Y, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers[J]. The Isme J, 2012, 6(2): 320-329.
43
Wu N, Yang X, Zhang R, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients [J]. Microb Ecol, 2013, 66(2): 462-470.
44
Ahn J, Sinha R, Pei Z, et al. Human gut microbiome and risk for colorectal cancer[J]. J Natl Cancer Inst, 2013, 105(24): 1907-1911.
45
Zackular JP, Rogers MA, MTtRuffin, et al. The human gut microbiome as a screening tool for colorectal cancer[J]. Cancer Prev Res (Phila), 2014, 7(11): 1112-1121.
46
Zeller G, Tap J, Voigt AY, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer [J]. Mol Syst Biol, 2014, 10 (11): 766.
47
Feng Q, Liang S, Jia H, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence [J]. Nat Commun, 2015, 6: 6528.
48
Eklöf V, Löfgren-Burström A, Zingmark C, et al. Cancer-associated fecal microbial markers in colorectal cancer detection[J]. Int J Cancer, 2017, 141(12): 2528-2536.
49
Liang Q, Chiu J, Chen Y, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer[J]. Clin Cancer Res, 2017, 23(8): 2061-2070.
50
Flemer B, Lynch DB, Brown JM, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer[J]. Gut, 2017, 66(4): 633-643.
51
Alomair AO, Masoodi I, Alyamani EJ, et al. Colonic mucosal microbiota in colorectal cancer: a single-center metagenomic study in saudi arabia[J]. Gastroenterol Res Pract, 2018, 2018: 5284754.
52
Yu J, Feng Q, Wong SH, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer[J]. Gut, 2017, 66(1): 70-78.
53
Dai Z, Coker OO, Nakatsu G, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers[J]. Microbiome, 2018, 6(1): 70.
54
Wirbel J, Pyl PT, Kartal E, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer[J]. Nat Med, 2019, 25(4): 679-689.
55
Thomas AM, Manghi P, Asnicar F, et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation[J]. Nat Med, 2019, 25(4): 667-678.
56
Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma[J]. Genome Res, 2012, 22(2): 292-298.
57
Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma[J]. Genome research, 2012, 22(2): 299-306.
58
Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment[J]. Cell Host & Microbe, 2013, 14(2): 207-215.
59
Abed J, Emgård JEM, Zamir G, et al. Fap2 mediates fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc [J]. Cell Host & Microbe, 2016, 20(2): 215-225.
60
Komiya Y, Shimomura Y, Higurashi T, et al. Patients with colorectal cancer have identical strains of in their colorectal cancer and oral cavity[J]. Gut, 2019, 68(7): 1335-1337.
61
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host & Microbe, 2013, 14(2): 195-206.
62
Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack [J]. Immunity, 2015, 42 (2): 344-355.
63
Mima K, Sukawa Y, Nishihara R, et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma [J]. JAMA Oncology, 2015, 1 (5): 653-661.
64
Tahara T, Yamamoto E, Suzuki H, et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma[J]. Cancer research, 2014, 74(5): 1311-1318.
65
Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis[J]. Gut, 2016, 65(12): 1973-1980.
66
Hamada T, Zhang X, Mima K, et al. Fusobacterium nucleatum in colorectal cancer relates to immune response differentially by tumor microsatellite instability status[J]. Cancer Immunol Res, 2018, 6(11): 1327-1336.
67
Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of persistence and antibiotic response in colorectal cancer[J]. Science, 2017, 358(6369): 1443-1448.
68
Nougayrède JP, Homburg S, Taieb F, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells[J]. Science, 2006, 313(5788): 848-851.
69
Cuevas-Ramos G, Petit CR, Marcq I, et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11537-11542.
70
Vizcaino MI, Crawford JM. The colibactin warhead crosslinks DNA[J]. Nature Chemistry, 2015, 7(5): 411-417.
71
Wilson MR, Jiang Y, Villalta PW, et al. The human gut bacterial genotoxin colibactin alkylates DNA [J]. Science, 2019, 363(6428): eaar7785.
72
Xue M, Kim CS, Healy AR, et al. Structure elucidation of colibactin and its DNA cross-links[J]. Science, 2019, 365(6457): eaax2685.
73
Arthur JC, Gharaibeh RZ, Mühlbauer M, et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer[J]. Nat Commun, 2014, 5: 4724.
74
Cougnoux A, Dalmasso G, Martinez R, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype[J]. Gut, 2014, 63(12): 1932-1942.
75
Toprak NU, Yagci A, Gulluoglu BM, et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer [J]. Clinical Microbiology and Infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 2006, 12(8): 782-786.
76
Boleij A, Hechenbleikner EM, Goodwin AC, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients [J]. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America, 2015, 60(2): 208-215.
77
Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses[J]. Nature Medicine, 2009, 15(9): 1016-1022.
78
Geis AL, Fan H, Wu X, et al. Regulatory T-cell response to enterotoxigenic bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis[J]. Cancer Discovery, 2015, 5(10): 1098-1109.
79
Chung L, Thiele Orberg E, Geis AL, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells[J]. Cell Host & Microbe, 2018, 23(3): 421.
80
Wu S, Morin PJ, Maouyo D, et al. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation [J]. Gastroenterology, 2003, 124(2): 392-400.
81
Goodwin AC, Destefano Shields CE, Wu S, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(37): 15354-15359.
82
He Z, Gharaibeh RZ, Newsome RC, et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin[J]. Gut, 2019, 68(2): 289-300.
83
Long X, Wong CC, Tong L, et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity[J]. Nat Microbiol, 2019, 4(12): 2319-2330.
84
Chen D, Jin D, Huang S, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota[J]. Cancer Lett, 2020, 469: 456-467.
85
Visconti A, Le Roy CI, Rosa F, et al. Interplay between the human gut microbiome and host metabolism [J]. Nat Commun, 2019, 10(1): 4505.
86
Jia W, Xie G, Jia W,. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis [J]. Nat Rev Gastroenterol Hepatol, 2018, 15 (2): 111-128.
87
Missiaglia E, Jacobs B, D'Ario G, et al. Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features [J]. Ann Oncol, 2014, 25(10): 1995-2001.
88
Lee MS, Menter DG, Kopetz S. Right versus left colon cancer biology: integrating the consensus molecular subtypes[J]. Journal of the National Comprehensive Cancer Network: JNCCN, 2017, 15(3): 411-419.
89
Petrelli F, Tomasello G, Borgonovo K, et al. Prognostic survival associated with left-sided vs right-sided colon cancer: a systematic review and meta-analysis[J]. JAMA Oncology, 2017, 3(2): 211-219.
90
Johansson MEV, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Suppl_1): 4659-4665.
91
Dejea CM, Wick EC, Hechenbleikner EM, et al. Microbiota organization is a distinct feature of proximal colorectal cancers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(51): 18321-18326.
92
Johnson CH, Dejea CM, Edler D, et al. Metabolism links bacterial biofilms and colon carcinogenesis[J]. Cell Metab, 2015, 21(6): 891-897.
93
Tomkovich S, Dejea CM, Winglee K, et al. Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic[J]. J Clin Invest, 2019, 130(4): 1699-1712.
94
Tjalsma H, Boleij A, Marchesi JR, et al. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects[J]. Nat Rev Microbiol, 2012, 10(8): 575-582.
95
Shah MS, DeSantis TZ, Weinmaier T, et al. Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer[J]. Gut, 2018, 67(5): 882-891.
96
Yachida S, Mizutani S, Shiroma H, et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer [J]. Nat Med, 2019, 25 (6): 968-976.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[5] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[6] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[7] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[8] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[9] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[10] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[11] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[12] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[13] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[14] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[15] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
阅读次数
全文


摘要