1 |
Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies[J]. Nature Reviews Gastroenterology & Hepatology, 2019, 16 (12): 713-732.
|
2 |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66 (2): 115-132.
|
3 |
Gopalakrishnan V, Helmink BA, Spencer CN, et al. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy[J]. Cancer Cell, 2018, 33 (4): 570-580.
|
4 |
Valdes AM, Walter J, Segal E, et al. Role of the gut microbiota in nutrition and health[J]. BMJ, 2018, 361 (Suppl_1): k2179.
|
5 |
Chao A, Thun MJ, Connell CJ, et al. Meat consumption and risk of colorectal cancer[J]. Jama, 2005, 293 (2): 172-182.
|
6 |
O'Keefe SJD, Chung D, Mahmoud N, et al. Why do African Americans get more colon cancer than Native Africans?[J]. J Nutr, 2007, 137 (Suppl_1): 175S-182S.
|
7 |
O'Keefe SJD, Ou J, Aufreiter S, et al. Products of the colonic microbiota mediate the effects of diet on colon cancer risk[J]. J Nutr, 2009, 139 (11): 2044-2048.
|
8 |
Ou J, Carbonero F, Zoetendal EG, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans[J]. Am J Clin Nutr, 2013, 98 (1): 111-120.
|
9 |
Ocvirk S, Wilson AS, Posma JM, et al. A prospective cohort analysis of gut microbial co-metabolism in Alaska Native and rural African people at high and low risk of colorectal cancer [J]. Am J Clin Nutr, 2020, 111 (2): 406-419.
|
10 |
The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome [J]. Nature, 2012, 486 (7402): 207-214.
|
11 |
Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes [J]. Science, 2011, 334 (6052): 105-108.
|
12 |
Pasolli E, Asnicar F, Manara S, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle[J]. Cell, 2019, 176 (3): 649-662.e620.
|
13 |
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing [J]. Nature, 2010, 464 (7285): 59-65.
|
14 |
De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa[J]. Proc Natl Acad Sci USA, 2010, 107 (33): 14691-14696.
|
15 |
Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486 (7402): 222-227.
|
16 |
Schnorr SL, Candela M, Rampelli S, et al. Gut microbiome of the Hadza hunter-gatherers[J]. Nat Commun, 2014, 5: 3654.
|
17 |
Rampelli S, Schnorr SL, Consolandi C, et al. Metagenome sequencing of the hadza hunter-gatherer gut microbiota[J]. Current biology: CB, 2015, 25(13): 1682-1693.
|
18 |
Clemente JC, Pehrsson EC, Blaser MJ, et al. The microbiome of uncontacted Amerindians[J]. Science Advances, 2015, 1 (3): e1500183.
|
19 |
Obregon-Tito AJ, Tito RY, Metcalf J, et al. Subsistence strategies in traditional societies distinguish gut microbiomes[J]. Nat Commun, 2015, 6: 6505.
|
20 |
Martínez I, Stegen JC, Maldonado-Gómez MX, et al. The gut microbiota of rural papua new guineans: composition, diversity patterns, and ecological processes[J]. Cell Rep, 2015, 11(4): 527-538.
|
21 |
Dehingia M, Devi KT, Talukdar NC, et al. Gut bacterial diversity of the tribes of India and comparison with the worldwide data [J]. Sci Rep, 2015, 5: 18563.
|
22 |
Zhang J, Guo Z, Xue Z, et al. A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities [J]. The Isme Journal, 2015, 9(9): 1979-1990.
|
23 |
Gomez A, Petrzelkova KJ, Burns MB, et al. Gut microbiome of coexisting BaAka pygmies and bantu reflects gradients of traditional subsistence patterns[J]. Cell Rep, 2016, 14(9): 2142-2153.
|
24 |
Deschasaux M, Bouter KE, Prodan A, et al. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography[J]. Nat Med, 2018, 24(10): 1526-1531.
|
25 |
Liao M, Xie Y, Mao Y, et al. Comparative analyses of fecal microbiota in Chinese isolated Yao population, minority Zhuang and rural Han by 16sRNA sequencing[J]. Sci Rep, 2018, 8(1): 1142.
|
26 |
He Y, Wu W, Zheng HM, et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models[J]. Nat Med, 2018, 24(10): 1532-1535.
|
27 |
Ayeni FA, Biagi E, Rampelli S, et al. Infant and adult gut microbiome and metabolome in rural bassa and urban settlers from nigeria[J]. Cell Rep, 2018, 23(10): 3056-3067.
|
28 |
Vangay P, Johnson AJ, Ward TL, et al. US immigration westernizes the human gut microbiome[J]. Cell, 2018, 175(4): 962-972.e910.
|
29 |
Kaplan RC, Wang Z, Usyk M, et al. Gut microbiome composition in the Hispanic Community Health Study/Study of Latinos is shaped by geographic relocation, environmental factors, and obesity [J]. Genome Biol, 2019, 20(1): 219.
|
30 |
Sonnenburg ED, Sonnenburg JL. The ancestral and industrialized gut microbiota and implications for human health[J]. Nat Rev Microbiol, 2019, 17(6): 383-390.
|
31 |
Hansen MEB, Rubel MA, Bailey AG, et al. Population structure of human gut bacteria in a diverse cohort from rural Tanzania and Botswana[J]. Genome Biol, 2019, 20 (1): 16.
|
32 |
Nayfach S, Shi ZJ, Seshadri R, et al. New insights from uncultivated genomes of the global human gut microbiome[J]. Nature, 2019, 568 (7753): 505-510.
|
33 |
Almeida A, Mitchell AL, Boland M, et al. A new genomic blueprint of the human gut microbiota[J]. Nature, 2019, 568(7753): 499-504.
|
34 |
Smits SA, Leach J, Sonnenburg ED, et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania[J]. Science, 2017, 357(6353): 802-806.
|
35 |
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7484): 559-563.
|
36 |
Lang JM, Pan C, Cantor RM, et al. Impact of individual traits, saturated fat, and protein source on the gut microbiome[J]. MBio, 2018, 9(6): e01604-01618.
|
37 |
O'Keefe SJ, Li JV, Lahti L, et al. Fat, fibre and cancer risk in African Americans and rural Africans[J]. Nat Commun, 2015, 6: 6342.
|
38 |
Bowyer RCE, Jackson MA, Le Roy CI, et al. Socioeconomic status and the gut microbiome: a twinsuk cohort study[J]. Microorganisms, 2019, 7 (1): 17.
|
39 |
Goodrich JK, Davenport ER, Beaumont M, et al. Genetic determinants of the gut microbiome in UK twins[J]. Cell Host & Microbe, 2016, 19(5): 731-743.
|
40 |
Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome[J]. Cell, 2014, 159(4): 789-799.
|
41 |
Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota[J]. Nature, 2018, 555(7695): 210-215.
|
42 |
Wang T, Cai G, Qiu Y, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers[J]. The Isme J, 2012, 6(2): 320-329.
|
43 |
Wu N, Yang X, Zhang R, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients [J]. Microb Ecol, 2013, 66(2): 462-470.
|
44 |
Ahn J, Sinha R, Pei Z, et al. Human gut microbiome and risk for colorectal cancer[J]. J Natl Cancer Inst, 2013, 105(24): 1907-1911.
|
45 |
Zackular JP, Rogers MA, MTtRuffin, et al. The human gut microbiome as a screening tool for colorectal cancer[J]. Cancer Prev Res (Phila), 2014, 7(11): 1112-1121.
|
46 |
Zeller G, Tap J, Voigt AY, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer [J]. Mol Syst Biol, 2014, 10 (11): 766.
|
47 |
Feng Q, Liang S, Jia H, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence [J]. Nat Commun, 2015, 6: 6528.
|
48 |
Eklöf V, Löfgren-Burström A, Zingmark C, et al. Cancer-associated fecal microbial markers in colorectal cancer detection[J]. Int J Cancer, 2017, 141(12): 2528-2536.
|
49 |
Liang Q, Chiu J, Chen Y, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer[J]. Clin Cancer Res, 2017, 23(8): 2061-2070.
|
50 |
Flemer B, Lynch DB, Brown JM, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer[J]. Gut, 2017, 66(4): 633-643.
|
51 |
Alomair AO, Masoodi I, Alyamani EJ, et al. Colonic mucosal microbiota in colorectal cancer: a single-center metagenomic study in saudi arabia[J]. Gastroenterol Res Pract, 2018, 2018: 5284754.
|
52 |
Yu J, Feng Q, Wong SH, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer[J]. Gut, 2017, 66(1): 70-78.
|
53 |
Dai Z, Coker OO, Nakatsu G, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers[J]. Microbiome, 2018, 6(1): 70.
|
54 |
Wirbel J, Pyl PT, Kartal E, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer[J]. Nat Med, 2019, 25(4): 679-689.
|
55 |
Thomas AM, Manghi P, Asnicar F, et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation[J]. Nat Med, 2019, 25(4): 667-678.
|
56 |
Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma[J]. Genome Res, 2012, 22(2): 292-298.
|
57 |
Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma[J]. Genome research, 2012, 22(2): 299-306.
|
58 |
Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment[J]. Cell Host & Microbe, 2013, 14(2): 207-215.
|
59 |
Abed J, Emgård JEM, Zamir G, et al. Fap2 mediates fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc [J]. Cell Host & Microbe, 2016, 20(2): 215-225.
|
60 |
Komiya Y, Shimomura Y, Higurashi T, et al. Patients with colorectal cancer have identical strains of in their colorectal cancer and oral cavity[J]. Gut, 2019, 68(7): 1335-1337.
|
61 |
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host & Microbe, 2013, 14(2): 195-206.
|
62 |
Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack [J]. Immunity, 2015, 42 (2): 344-355.
|
63 |
Mima K, Sukawa Y, Nishihara R, et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma [J]. JAMA Oncology, 2015, 1 (5): 653-661.
|
64 |
Tahara T, Yamamoto E, Suzuki H, et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma[J]. Cancer research, 2014, 74(5): 1311-1318.
|
65 |
Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis[J]. Gut, 2016, 65(12): 1973-1980.
|
66 |
Hamada T, Zhang X, Mima K, et al. Fusobacterium nucleatum in colorectal cancer relates to immune response differentially by tumor microsatellite instability status[J]. Cancer Immunol Res, 2018, 6(11): 1327-1336.
|
67 |
Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of persistence and antibiotic response in colorectal cancer[J]. Science, 2017, 358(6369): 1443-1448.
|
68 |
Nougayrède JP, Homburg S, Taieb F, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells[J]. Science, 2006, 313(5788): 848-851.
|
69 |
Cuevas-Ramos G, Petit CR, Marcq I, et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11537-11542.
|
70 |
Vizcaino MI, Crawford JM. The colibactin warhead crosslinks DNA[J]. Nature Chemistry, 2015, 7(5): 411-417.
|
71 |
Wilson MR, Jiang Y, Villalta PW, et al. The human gut bacterial genotoxin colibactin alkylates DNA [J]. Science, 2019, 363(6428): eaar7785.
|
72 |
Xue M, Kim CS, Healy AR, et al. Structure elucidation of colibactin and its DNA cross-links[J]. Science, 2019, 365(6457): eaax2685.
|
73 |
Arthur JC, Gharaibeh RZ, Mühlbauer M, et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer[J]. Nat Commun, 2014, 5: 4724.
|
74 |
Cougnoux A, Dalmasso G, Martinez R, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype[J]. Gut, 2014, 63(12): 1932-1942.
|
75 |
Toprak NU, Yagci A, Gulluoglu BM, et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer [J]. Clinical Microbiology and Infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 2006, 12(8): 782-786.
|
76 |
Boleij A, Hechenbleikner EM, Goodwin AC, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients [J]. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America, 2015, 60(2): 208-215.
|
77 |
Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses[J]. Nature Medicine, 2009, 15(9): 1016-1022.
|
78 |
Geis AL, Fan H, Wu X, et al. Regulatory T-cell response to enterotoxigenic bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis[J]. Cancer Discovery, 2015, 5(10): 1098-1109.
|
79 |
Chung L, Thiele Orberg E, Geis AL, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells[J]. Cell Host & Microbe, 2018, 23(3): 421.
|
80 |
Wu S, Morin PJ, Maouyo D, et al. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation [J]. Gastroenterology, 2003, 124(2): 392-400.
|
81 |
Goodwin AC, Destefano Shields CE, Wu S, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(37): 15354-15359.
|
82 |
He Z, Gharaibeh RZ, Newsome RC, et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin[J]. Gut, 2019, 68(2): 289-300.
|
83 |
Long X, Wong CC, Tong L, et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity[J]. Nat Microbiol, 2019, 4(12): 2319-2330.
|
84 |
Chen D, Jin D, Huang S, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota[J]. Cancer Lett, 2020, 469: 456-467.
|
85 |
Visconti A, Le Roy CI, Rosa F, et al. Interplay between the human gut microbiome and host metabolism [J]. Nat Commun, 2019, 10(1): 4505.
|
86 |
Jia W, Xie G, Jia W,. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis [J]. Nat Rev Gastroenterol Hepatol, 2018, 15 (2): 111-128.
|
87 |
Missiaglia E, Jacobs B, D'Ario G, et al. Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features [J]. Ann Oncol, 2014, 25(10): 1995-2001.
|
88 |
Lee MS, Menter DG, Kopetz S. Right versus left colon cancer biology: integrating the consensus molecular subtypes[J]. Journal of the National Comprehensive Cancer Network: JNCCN, 2017, 15(3): 411-419.
|
89 |
Petrelli F, Tomasello G, Borgonovo K, et al. Prognostic survival associated with left-sided vs right-sided colon cancer: a systematic review and meta-analysis[J]. JAMA Oncology, 2017, 3(2): 211-219.
|
90 |
Johansson MEV, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Suppl_1): 4659-4665.
|
91 |
Dejea CM, Wick EC, Hechenbleikner EM, et al. Microbiota organization is a distinct feature of proximal colorectal cancers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(51): 18321-18326.
|
92 |
Johnson CH, Dejea CM, Edler D, et al. Metabolism links bacterial biofilms and colon carcinogenesis[J]. Cell Metab, 2015, 21(6): 891-897.
|
93 |
Tomkovich S, Dejea CM, Winglee K, et al. Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic[J]. J Clin Invest, 2019, 130(4): 1699-1712.
|
94 |
Tjalsma H, Boleij A, Marchesi JR, et al. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects[J]. Nat Rev Microbiol, 2012, 10(8): 575-582.
|
95 |
Shah MS, DeSantis TZ, Weinmaier T, et al. Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer[J]. Gut, 2018, 67(5): 882-891.
|
96 |
Yachida S, Mizutani S, Shiroma H, et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer [J]. Nat Med, 2019, 25 (6): 968-976.
|