切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2023, Vol. 12 ›› Issue (06) : 495 -499. doi: 10.3877/cma.j.issn.2095-3224.2023.06.010

综述

肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展
何吉鑫, 杨燕妮, 王继伟, 李建国(), 谢铭   
  1. 563000 遵义医科大学附属医院胃肠外科
  • 收稿日期:2022-11-17 出版日期:2023-12-25
  • 通信作者: 李建国
  • 基金资助:
    国家自然科学基金(No. 81960105); 贵州省科学技术基金(No.黔科合基础[2020]1Y301)

Research progress on the mechanism of intestinal flora metabolites involved in the occurrence of chronic constipation

Jixin He, Yanni Yang, Jiwei Wang, Jianguo Li(), Ming Xie   

  1. Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
  • Received:2022-11-17 Published:2023-12-25
  • Corresponding author: Jianguo Li
引用本文:

何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.

Jixin He, Yanni Yang, Jiwei Wang, Jianguo Li, Ming Xie. Research progress on the mechanism of intestinal flora metabolites involved in the occurrence of chronic constipation[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2023, 12(06): 495-499.

慢性便秘是临床上最常见的功能性胃肠道疾病之一。便秘患者和正常人群的肠道菌群存在差异,其生物多样性发生改变,提示肠道菌群的改变可能与便秘的发生有关。肠道菌群及相关代谢产物可以通过调节肠道相关信号通路来影响肠道功能,参与便秘的发生。近年来,越来越多的证据表明,脑-肠-菌群轴与便秘的发生和发展密切相关,并对肠道内环境产生重要影响。慢性便秘不仅影响患者的生理功能,而且会给患者带来不同程度的心理障碍,降低患者的生活质量。因此,许多学者致力于探索慢性便秘发生与发展过程中的相关因素。然而,现有的报道尚未完全阐明便秘发展过程中肠道菌群和宿主代谢的调节机制,许多研究结果存在分歧甚至矛盾之处。本文将从肠道菌群与肠道代谢产物出发,讨论脑-肠-菌群轴在慢性便秘中的作用,并进一步展望益生菌及粪菌移植对慢性便秘潜在的治疗效果。

Chronic constipation is one of the most common functional gastrointestinal disorders in clinical practice. There are differences in the gut microbiota between constipated patients and the normal population, and their biodiversity is altered, suggesting that alterations in the microbiota may be related to the occurrence of constipation. Gut microbes and related metabolites can influence intestinal function and participate in the development of constipation by regulating intestine-related signaling pathways. In recent years, there is increasing evidence that the brain-gut-microbiota axis is closely related to the occurrence and development of constipation and has an important impact on the intestinal environment. Chronic constipation not only affects the physiological function of patients but also brings about different degrees of psychological disorders and reduces the quality of life of patients. Therefore, many scholars have devoted themselves to exploring the factors involved in the development of chronic constipation. However, the existing reports have not fully elucidated the regulatory mechanisms of gut microbes and host metabolism in the development of constipation, and many findings are divergent or even contradictory. In this paper, we will discuss the role of the brain-gut-microbe axis in chronic constipation from the perspective of gut microbes and gut metabolites, and further look into the potential therapeutic effects of probiotics and fecal bacteria transplantation on chronic constipation.

[1]
中华医学会外科学分会结直肠外科学组. 中国成人慢性便秘评估与外科处理临床实践指南(2022版)[J]. 中华胃肠外科杂志, 2022, 25(1): 1-9.
[2]
Bharucha AE, Lacy BE. Mechanisms, evaluation, and management of chronic constipation[J]. Gastroenterology, 2020, 158(5): 1232-1249.e3.
[3]
Yang Z, Wu CX, Gao J, et al. Prevalence of chronic constipation in chinese adults: a meta-analysis[J]. Chinese General Practice, 2021, 24(16): 2092-2097.
[4]
Bharucha AE, Wald A. Chronic constipation[J]. Mayo Clinic Proceedings, 2019, 94(11): 2340-2357.
[5]
Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions[J]. Science (New York, N.Y.), 2012, 336(6086): 1262-1267.
[6]
Ge X, Zhao W, Ding C, et al. Potential role of fecal microbiota from patients with slow transit constipation in the regulation of gastrointestinal motility[J]. Sci Rep, 2017, 7(1): 441.
[7]
Shin A, Camilleri M, Vijayvargiya P, et al. Bowel functions, fecal unconjugated primary and secondary bile acids, and colonic transit in patients with irritable bowel syndrome[J]. Clin Gastroenterol Hepatol, 2013, 11(10): 1270-1275.e1.
[8]
Guarino M, Cheng L, Cicala M, et al. Progesterone receptors and serotonin levels in colon epithelial cells from females with slow transit constipation[J]. Neurogastroenterol Motil, 2011, 23(6): 575-e210.
[9]
Barbara G, Feinle-Bisset C, Ghoshal UC, et al. The intestinal microenvironment and functional gastrointestinal disorders[J]. Gastroenterology, 2016, 18: S0016-5085(16)00219-5.
[10]
Reigstad CS, Kashyap PC. Beyond phylotyping: understanding the impact of gut microbiota on host biology[J]. Neurogastroenterol Motil, 2013, 25(5): 358-372.
[11]
Ohkusa T, Koido S, Nishikawa Y, et al. Gut microbiota and chronic constipation: a review and update[J]. Front Med (Lausanne), 2019, 6(12): 19.
[12]
Parthasarathy G, Chen J, Chen X, et al. Relationship between microbiota of the colonic mucosa vs feces and symptoms, colonic transit, and methane production in female patients with chronic constipation[J]. Gastroenterology, 2016, 150(2): 367-379.e1.
[13]
Li H, Chen J, Ren X, et al. Gut microbiota composition changes in constipated women of reproductive age[J]. Front Cell Infect Microbiol, 2020, 10(1): 557515.
[14]
Cao H, Liu X, An Y, et al. Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine[J]. Sci Rep, 2017, 7(1): 10322.
[15]
Zhang S, Wang R, Li D, et al. Role of gut microbiota in functional constipation[J]. Gastroenterol Rep (Oxf), 2021, 9(5): 392-401.
[16]
Mawe GM, Hoffman JM. Serotonin signalling in the gut--functions, dysfunctions and therapeutic targets[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(8): 473-486.
[17]
Koopman N, Katsavelis D, Hove AST, et al. The multifaceted role of serotonin in intestinal homeostasis[J]. Int J Mol Sci, 2021, 22(17): 9487.
[18]
Rezzani R, Franco C, Franceschetti L, et al. A focus on enterochromaffin cells among the enteroendocrine cells: localization, morphology, and role[J]. Int J Mol Sci, 2022, 23(7): 3758.
[19]
Chen Z, Luo J, Li J, et al. Interleukin-33 promotes serotonin release from enterochromaffin cells for intestinal homeostasis[J]. Immunity, 2021, 54(1): 151-163.e6.
[20]
Lee HA, Ju Moon S, Yoo H, et al. YH12852, a potent and selective receptor agonist of 5-hydroxytryptamine, increased gastrointestinal motility in healthy volunteers and patients with functional constipation[J]. Clin Transl Sci, 2021, 14(2): 625-634.
[21]
Martin-Gallausiaux C, Marinelli L, Blottière HM, et al. SCFA: mechanisms and functional importance in the gut[J]. Proc Nutr Soc, 2021, 80(1): 37-49.
[22]
Jk W, Sk Y. Roles of gut microbiota and metabolites in pathogenesis of functional constipation[J]. Evid Based Complement Alternat Med, 2021, 2021(9): 5560310.
[23]
Binder HJ, Mehta P. Short-chain fatty acids stimulate active sodium and chloride absorption in vitro in the rat distal colon[J]. Gastroenterology, 1989, 96(4): 989-996.
[24]
Wang L, Cen S, Wang G, et al. Acetic acid and butyric acid released in large intestine play different roles in the alleviation of constipation[J]. Journal of Functional Foods, 2020, 69(6): 103953.
[25]
Zhu L, Liu W, Alkhouri R, et al. Structural changes in the gut microbiome of constipated patients[J]. Physiol Genomics, 2014, 46(18): 679-686.
[26]
Zhuang M, Shang W, Ma Q, et al. Abundance of probiotics and butyrate-production microbiome manages constipation via short-chain fatty acids production and hormones secretion[J]. Mol Nutr Food Res, 2019, 63(23): e1801187.
[27]
Soret R, Chevalier J, De Coppet P, et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats[J]. Gastroenterology, 2010, 138(5): 1772-1782.
[28]
Hofmann AF. Causal role of bile acids in irritable bowel syndrome-constipation[J]. Clin Gastroenterol Hepatol, 2019, 17(1): 213-214.
[29]
Camilleri M, Vijayvargiya P. The role of bile acids in chronic diarrhea[J]. Am J Gastroenterol, 2020, 115(10): 1596-1603.
[30]
Wahlström A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metabolism, 2016, 24(1): 41-50.
[31]
Bunnett NW. Neuro-humoral signalling by bile acids and the TGR5 receptor in the gastrointestinal tract[J]. J Physiol, 2014, 592(14): 2943-2950.
[32]
Acosta A, Camilleri M. Elobixibat and its potential role in chronic idiopathic constipation[J]. Therap Adv Gastroenterol, 2014, 7(4): 167-175.
[33]
Dey N, Wagner VE, Blanton LV, et al. Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel[J]. Cell, 2015, 163(1): 95-107.
[34]
Hofmann AF, Loening-Baucke V, Lavine JE, et al. Altered bile acid metabolism in childhood functional constipation: inactivation of secretory bile acids by sulfation in a subset of patients[J]. J Pediatr Gastroenterol Nutr, 2008, 47(5): 598-606.
[35]
Dinan TG, Cryan JF. The microbiome-gut-brain axis in health and disease[J]. Gastroenterol Clin North Am, 2017, 46(1): 77-89.
[36]
Furness JB. The enteric nervous system and neurogastroenterology[J]. Nat Rev Gastroenterol Hepatol, 2012, 9(5): 286-294.
[37]
Mayer EA, Nance K, Chen S. the gut-brain axis[J]. Annu Rev Med, 2022, 73(1): 439-453.
[38]
Agirman G, Hsiao EY. SnapShot: the microbiota-gut-brain axis[J]. Cell, 2021, 184(9): 2524-2524.e1.
[39]
Winter G, Hart RA, Charlesworth RPG, et al. Gut microbiome and depression: what we know and what we need to know[J]. Reviews in the Neurosciences, 2018, 29(6): 629-643.
[40]
Stasi C, Sadalla S, Milani S. The relationship between the serotonin metabolism, gut-microbiota and the gut-brain axis[J]. Current Drug Metabolism, 2019, 20(8): 646-655.
[41]
De Vadder F, Grasset E, Mannerås Holm L, et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks[J]. Proc Natl Acad Sci USA, 2018, 115(25): 6458-6463.
[42]
Gao K, Mu CL, Farzi A, et al. Tryptophan metabolism: a link between the gut microbiota and brain[J]. Advances in Nutrition(Bethesda, Md.), 2020, 11(3): 709-723.
[43]
Dimidi E, Mark Scott S, Whelan K. Probiotics and constipation: mechanisms of action, evidence for effectiveness and utilisation by patients and healthcare professionals[J]. Proc Nutr Soc, 2020, 79(1): 147-157.
[44]
Wallace C, Sinopoulou V, Gordon M, et al. Probiotics for treatment of chronic constipation in children[J]. Cochrane Database Syst Rev, 2022, 3(3): CD014257.
[45]
Dimidi E, Cox C, Scott SM, et al. Probiotic use is common in constipation, but only a minority of general and specialist doctors recommend them and consider there to be an evidence base[J]. Nutrition (Burbank, Los Angeles County, Calif.), 2019, 61(5): 157-163.
[46]
Ning L, Hongliang T, Qiyi C, et al. Efficacy analysis of fecal microbiota transplantation in the treatment of 2010 patients with intestinal disorders[J]. Chin J Gastrointestl Surg, 2019, 22(9): 861-868.
[47]
Miller LE, Ouwehand AC, Ibarra A. Effects of probiotic-containing products on stool frequency and intestinal transit in constipated adults: systematic review and meta-analysis of randomized controlled trials[J]. Ann Gastroenterol, 2017, 30(6): 629-639.
[48]
Zhang C, Jiang J, Tian F, et al. Meta-analysis of randomized controlled trials of the effects of probiotics on functional constipation in adults[J]. Clin Nutr, 2020, 39(10): 2960-2969.
[49]
Liu N, Sun S, Wang P, et al. The mechanism of secretion and metabolism of gut-derived 5-hydroxytryptamine[J]. Inter J Mol Sci, 2021, 22(15): 7931.
[50]
陈劲松, 陈锦旭, 王荣昌. 肠道菌群在结直肠癌中的作用[J/OL]. 中华普通外科学文献(电子版), 2023, 17(3): 169-172.
[51]
Cao YN, Feng LJ, Wang BM, et al. Lactobacillus acidophilus and Bifidobacterium longum supernatants upregulate the serotonin transporter expression in intestinal epithelial cells[J]. Saudi J Gastroenterol, 2018, 24(1): 59-66.
[1] 刘丹丹, 宋鸣, 李霞, 徐夏君. 老年髋部骨折术后便秘的影响因素及其列线图预测模型[J]. 中华关节外科杂志(电子版), 2023, 17(05): 607-612.
[2] 李丹阳, 李满祥. 肠道菌群失调在肺动脉高压发病中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 432-434.
[3] 邰清亮, 施波, 侍新宇, 陈国梁, 陈俊杰, 武冠廷, 王索, 孙金兵, 顾闻, 叶建新, 何宋兵. 腹腔镜次全结肠切除术治疗顽固性慢传输型便秘的疗效分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 478-483.
[4] 周启阳, 何宋兵, 胡优, 陈昕, 周雨迪, 周晓俊. 第四代达芬奇机器人单孔加一腹腔镜全结肠切除术治疗慢传输型便秘一例(附视频)[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 348-352.
[5] 乔小梅, 孔凯丽, 方敬爱, 张晓东. "肠-皮肤轴"与尿毒症皮肤病变的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 291-294.
[6] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[7] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[8] 杨程鹏, 金佳, 王明祥, 戴光耀. 直肠黏膜环切联合阴道后壁折叠治疗出口梗阻型便秘的效果观察[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 471-474.
[9] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[10] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[11] 许新意, 岳婧婧, 高玲, 曾禹沙, 李婧婧, 冯克, 薛雅红. 经会阴超声与MRI排粪造影诊断女性出口梗阻型便秘的临床价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 342-348.
[12] 郑秀丽, 倪敏. 功能性便秘患者的直肠肛门抑制反射特征分析100例[J]. 中华临床医师杂志(电子版), 2023, 17(08): 870-875.
[13] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[14] 杜青瑶, 曹颖雯, 林健雄, 郝润, 王静敏, 徐锐权, 寇晓霞. 肠道菌群促进诺如病毒感染的机制[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 241-244,255.
[15] 金泽平, 董晶, 柳云鹏, 汪阳. 菌群-肠道-脑轴与缺血性卒中危险因素关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 510-517.
阅读次数
全文


摘要