| [1] |
Borregaard N. Neutrophils, from marrow to microbes[J]. Immunity, 2010, 33(5): 657-670.
|
| [2] |
Koenderman L,Vrisekoop N. Neutrophils in cancer: from biology to therapy[J]. Cell Mol Immunol, 2025, 22(1): 4-23.
|
| [3] |
Liu Y, Liang J, Zhang Y, et al. Drug resistance and tumor immune microenvironment: an overview of current understandings (Review)[J]. Int J Oncol, 2024, 65(4): 96.
|
| [4] |
Barry ST, Gabrilovich DI, Sansom OJ, et al. Therapeutic targeting of tumour myeloid cells[J]. Nat Rev Cancer, 2023, 23(4): 216-237.
|
| [5] |
Siegel RL, Wagle NS, Cercek A, et al. Colorectal cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(3): 233-254.
|
| [6] |
Maier-Begandt D, Alonso-Gonzalez N, Klotz L, et al. Neutrophils-biology and diversity[J]. Nephrol Dial Transplant, 2024, 39(10): 1551-1564.
|
| [7] |
Aroca-Crevillén A, Vicanolo T, Ovadia S, et al. Neutrophils in physiology and pathology[J]. Annu Rev Pathol, 2024(19): 227-259.
|
| [8] |
Hedrick CC, Malanchi I. Neutrophils in cancer: heterogeneous and multifaceted[J]. Nat Rev Immunol, 2022, 22(3): 173-187.
|
| [9] |
Zhang M, Qin H, Wu Y, et al. Complex role of neutrophils in the tumor microenvironment: an avenue for novel immunotherapies[J]. Cancer Biol Med, 2024, 21(10): 849-863.
|
| [10] |
Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN[J]. Cancer Cell, 2009, 16(3): 183-194.
|
| [11] |
Liu S, Wu W, Du Y, et al. The evolution and heterogeneity of neutrophils in cancers: origins, subsets, functions, orchestrations and clinical applications[J]. Mol Cancer, 2023, 22(1): 148.
|
| [12] |
Xue R, Zhang Q, Cao Q, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity[J]. Nature, 2022, 612(7938): 141-147.
|
| [13] |
Wang N, Wang Q, Chi J, et al. Carcinoembryonic antigen cell adhesion molecule 1 inhibits the antitumor effect of neutrophils in tongue squamous cell carcinoma[J]. Cancer Sci, 2019, 110(2): 519-529.
|
| [14] |
Andzinski L, Kasnitz N, Stahnke S, et al. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human[J]. Int J Cancer, 2016, 138(8): 1982-1993.
|
| [15] |
Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more[J]. Nat Rev Cancer, 2016, 16(7): 431-446.
|
| [16] |
Hu B, Friedman G, Elinav E, et al. Transmissible inflammation-induced colorectal cancer in inflammasome-deficient mice[J]. Oncoimmunology, 2018, 8(10): e981995.
|
| [17] |
Nøst TH, Alcala K, Urbarova I, et al. Systemic inflammation markers and cancer incidence in the UK Biobank[J]. Eur J Epidemiol, 2021, 36(8): 841-848.
|
| [18] |
Zheng W, Wu J, Peng Y, et al. Tumor-associated neutrophils in colorectal cancer development, progression and immunotherapy[J]. Cancers (Basel), 2022, 14(19): 4755.
|
| [19] |
Yuan J, Ma J, Zhang F, et al. Neutrophil-derived serine proteases induce FOXA2-mediated autophagy dysfunction and exacerbate colitis-associated carcinogenesis via protease activated receptor 2[J]. Autophagy, 2025, 21(10): 2130-2147.
|
| [20] |
Butin-Israeli V, Bui TM, Wiesolek HL, et al. Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing[J]. J Clin Invest, 2019, 129(2): 712-726.
|
| [21] |
Xia T, Guo J, Zhang B, et al. Bisphenol a promotes the progression of colon cancer through dual-targeting of NADPH oxidase and mitochondrial electron-transport chain to produce ros and activating HIF-1α/VEGF/PI3K/AKT axis[J]. Front Endocrinol (Lausanne), 2022(13): 933051.
|
| [22] |
Lee YS, Choi I, Ning Y, et al. Interleukin-8 and its receptor CXCR2 in the tumour microenvironment promote colon cancer growth, progression and metastasis[J]. Br J Cancer, 2012, 106(11): 1833-1841.
|
| [23] |
Rodriguez PC, Quiceno DG, Zabaleta J, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses[J]. Cancer Res, 2004, 64(16): 5839-5849.
|
| [24] |
Germann M, Zangger N, Sauvain MO, et al. Neutrophils suppress tumor-infiltrating T cells in colon cancer via matrix metalloproteinase-mediated activation of TGFβ[J]. EMBO Mol Med, 2020, 12(1): e10681.
|
| [25] |
Cui C, Chakraborty K, Tang XA, et al. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis[J]. Cell, 2021, 184(12): 3163-3177.
|
| [26] |
Tadie JM, Bae HB, Jiang S, et al. HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 304(5): L342-349.
|
| [27] |
Stehr AM, Wang G, Demmler R, et al. Neutrophil extracellular traps drive epithelial-mesenchymal transition of human colon cancer[J]. J Pathol, 2022, 256(4): 455-467.
|
| [28] |
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression[J]. Genes Dev, 2018, 32(19-20): 1267-1284.
|
| [29] |
Kochumon S, Al-Sayyar A, Jacob T, et al. TGF-β and TNF-α interaction promotes the expression of MMP-9 through H3K36 dimethylation: implications in breast cancer metastasis[J]. Front Immunol, 2024(15): 1430187.
|
| [30] |
Denis Musquer M, Jouand N, Pere M, et al. High-density of FcγRIIIA+ (CD16+) tumor-associated neutrophils in metastases improves the therapeutic response of cetuximab in metastatic colorectal cancer patients, independently of the HLA-E/CD94-NKG2A Axis[J]. Front Oncol, 2021(11): 684478.
|
| [31] |
Liu Z, Liu B, Feng Y, et al. Dual-targeted self-adjuvant heterocyclic lipidoid@polyester hybrid nanovaccines for boosting cancer immunotherapy[J]. ACS Nano, 2024, 18(24): 15557-15575.
|
| [32] |
Korbecki J, Kojder K, Simińska D, et al. CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4[J]. Int J Mol Sci, 2020, 21(21): 8412.
|
| [33] |
Tosti N, Cremonesi E, Governa V, et al. Infiltration by IL22-producing T cells promotes neutrophil recruitment and predicts favorable clinical outcome in human colorectal cancer[J]. Cancer Immunol Res, 2020, 8(11): 1452-1462.
|
| [34] |
Vadillo E, Mantilla A, Aguilar-Flores C, et al. The invasive margin of early-stage human colon tumors is infiltrated with neutrophils of an antitumoral phenotype[J]. J Leukoc Biol, 2023, 114(6): 672-683.
|
| [35] |
Cao TM, King MR. Supercharged eGFP-TRAIL decorated NETs to ensnare and kill disseminated tumor cells[J]. Cell Mol Bioeng, 2020, 13(4): 359-367.
|
| [36] |
Andzinski L, Kasnitz N, Stahnke S, et al. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human[J]. Int J Cancer, 2016, 138(8): 1982-1993.
|
| [37] |
Hsu BE, Tabariès S, Johnson RM, et al. Immature low-density neutrophils exhibit metabolic flexibility that facilitates breast cancer liver metastasis[J]. Cell Rep, 2019, 27(13): 3902-3915.
|
| [38] |
Yin C, Okugawa Y, Yamamoto A, et al. Prognostic significance of CD8+ tumor-infiltrating lymphocytes and CD66b+ tumor-associated neutrophils in the invasive margins of stages Ⅰ-Ⅲ colorectal cancer[J]. Oncol Lett, 2022, 24(1): 212.
|
| [39] |
Yang L, Liu Q, Zhang X, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25[J]. Nature, 2020, 583(7814): 133-138.
|
| [40] |
Zhang L, Li Z, Skrzypczynska KM, et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer[J]. Cell, 2020, 181(2): 442-459.e29.
|
| [41] |
Khan U, Chowdhury S, Billah MM, et al. Neutrophil extracellular traps in colorectal cancer progression and metastasis[J]. Int J Mol Sci, 2021, 22(14): 7260.
|
| [42] |
Chen J, Zhu T, Jiang G, et al. Target delivery of a PD-1-TREM2 scFv by CAR-T cells enhances anti-tumor efficacy in colorectal cancer[J]. Mol Cancer, 2023, 22(1): 131.
|
| [43] |
Sun L, Liu R, Wu ZJ, et al. Galectin-7 Induction by EHMT2 inhibition enhances immunity in microsatellite stability colorectal cancer[J]. Gastroenterology, 2024, 166(3): 466-482.
|
| [44] |
Zhou J, Li L, Pu Y, et al. Astragaloside Ⅳ inhibits colorectal cancer metastasis by reducing extracellular vesicles release and suppressing M2-type TAMs activation[J]. Heliyon, 2024, 10(10): e31450.
|
| [45] |
Maity P, Ganguly S, Deb PK. Therapeutic potential of adenosine receptor modulators in cancer treatment[J]. RSC Adv, 2025, 15(26): 20418-20445.
|
| [46] |
Xia Y, He J, Zhang H, et al. AAV-mediated gene transfer of DNase I in the liver of mice with colorectal cancer reduces liver metastasis and restores local innate and adaptive immune response[J]. Mol Oncol, 2020, 14(11): 2920-2935.
|
| [47] |
Hsu AY, Huang Q, Liu F, et al. Neutrophil death-more than meets the eye[J]. Exp Hematol, 2025: 104857.
|
| [48] |
Zhu W, Yang S, Meng D, et al. Targeting NADPH oxidase and integrin α5β1 to inhibit neutrophil extracellular traps-mediated metastasis in colorectal cancer[J]. Int J Mol Sci, 2023, 24(21): 16001.
|
| [49] |
Frota Reis AV, de Sousa ACC, de Freitas JVB, et al. Effect of PLGA composition on nanoencapsulation, fluorescence stability and cellular internalization of R-phycoerythrin in colorectal cancer cells[J]. Int J Pharm, 2025(682): 125966.
|
| [50] |
Bullock AJ, Schlechter BL, Fakih MG, et al. Botensilimab plus balstilimab in relapsed/refractory microsatellite stable metastatic colorectal cancer: a phase 1 trial[J]. Nat Med, 2024, 30(9): 2558-2567.
|
| [51] |
Gao Q, Yang L, Ye S, et al. Targeting SIRT2 induces MLH1 deficiency and boosts antitumor immunity in preclinical colorectal cancer models[J]. Sci Transl Med, 2025, 17(807): eadv0766.
|
| [52] |
Cheng S, Li Z, Gao R, et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells[J]. Cell, 2021, 184(3): 792-809.e23.
|
| [53] |
Cheong JE, Sun L. Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy - challenges and opportunities[J]. Trends Pharmacol Sci, 2018, 39(3): 307-325.
|
| [54] |
Lewis HD, Liddle J, Coote JE, et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation[J]. Nat Chem Biol, 2015, 11(3): 189-191.
|