切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2025, Vol. 14 ›› Issue (06) : 526 -532. doi: 10.3877/cma.j.issn.2095-3224.2025.06.006

论著

放疗诱导微卫星稳定型结直肠癌细胞外泌体成分变化及其增强CD8+T细胞功能的体外研究
张宇坤1, 王春林2, 周珉玮1, 李震洋1, 周易明1, 顾晓冬1, 项建斌1,()   
  1. 1200040 上海,复旦大学附属华山医院普外科
    2150001 哈尔滨医科大学附属第二医院结直肠肿瘤外科
  • 收稿日期:2025-09-15 出版日期:2025-12-25
  • 通信作者: 项建斌
  • 基金资助:
    国家自然科学基金项目(No. 82172705)

Radiotherapy-induced changes in exosome composition of microsatellite stable colorectal cancer cells and its enhancement of CD8+T cell function: an in vitro study

Yukun Zhang1, Chunlin Wang2, Minwei Zhou1, Zhenyang Li1, Yiming Zhou1, Xiaodong Gu1, Jianbing Xiang1,()   

  1. 1Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
    2Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
  • Received:2025-09-15 Published:2025-12-25
  • Corresponding author: Jianbing Xiang
引用本文:

张宇坤, 王春林, 周珉玮, 李震洋, 周易明, 顾晓冬, 项建斌. 放疗诱导微卫星稳定型结直肠癌细胞外泌体成分变化及其增强CD8+T细胞功能的体外研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(06): 526-532.

Yukun Zhang, Chunlin Wang, Minwei Zhou, Zhenyang Li, Yiming Zhou, Xiaodong Gu, Jianbing Xiang. Radiotherapy-induced changes in exosome composition of microsatellite stable colorectal cancer cells and its enhancement of CD8+T cell function: an in vitro study[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2025, 14(06): 526-532.

目的

观察微卫星稳定(MSS)型结直肠癌细胞放射治疗后,分泌外泌体对CD8+T细胞功能的影响,并探究其潜在机制。

方法

分别用0 Gy、10 Gy及20 Gy处理CT-26细胞,采用CCK-8实验检测细胞活性,流式细胞术检测放射处理后细胞凋亡情况,以确定放射剂量;采用超速离心法分离外泌体,使用透射电镜及Western blot鉴定外泌体;将CD8+T细胞分别单独培养(空白组)与外泌体共培养(实验组)后,使用流式细胞术检测CD8+T细胞功能变化;应用外泌体转录组及代谢组技术研究放疗对CT-26外泌体成分的影响。

结果

10 Gy的放射剂量未对CT-26细胞的增殖产生明显影响。放疗对CT-26分泌外泌体的形态和分泌量未产生明显影响,改变了外泌体中部分非编码RNA的比例和代谢物的组成,差异代谢物富集分析结果显示,放疗后CT-26外泌体代谢产物变化主要富集到了神经活性配体-受体相互作用、血清素能突触、维甲酸代谢、鞘脂代谢等免疫相关代谢通路。与空白组相比,CT-26外泌体(对照组)抑制CD8+T细胞的功能(空白组vs.对照组:CD44+CD8+T细胞:60.720±3.529 vs. 42.640±2.378,t=9.501,P<0.001;IFN-γ+CD8+T细胞:2.362±0.418 vs. 1.632±0.198,t=3.532,P=0.008),放疗后CT-26外泌体逆转此过程,使CD8+T细胞功能恢复接近至空白组状态(放射组vs.对照组:CD44+CD8+T细胞:61.720±3.891 vs. 42.640±2.378,t=9.357,P<0.001;IFN-γ+CD8+T细胞:2.512±0.469 vs. 1.632±0.198,t=3.858,P=0.010)。

结论

放疗能通过重塑MSS型结直肠癌细胞外泌体代谢,激活CD8+T细胞的抗肿瘤免疫功能。

Objective

To investigate the effect of exosomes secreted by microsatellite stability(MSS) colorectal cancer cells after radiotherapy on the function of CD8+T cells and to explore the underlying mechanisms.

Methods

CT-26 cells were treated with 0 Gy, 10 Gy, and 20 Gy radiation doses, and cell viability was assessed using the CCK-8 assay, while apoptosis was measured by flow cytometry to determine the optimal radiation dose. Exosomes were isolated by ultracentrifugation and characterized by transmission electron microscopy and Western blot. CD8+T cells were cultured alone (control group) or co-cultured with exosomes (experimental group), followed by functional analysis via flow cytometry. Exosomal transcriptomic and metabolomic approaches were employed to investigate the impact of radiotherapy on the composition of CT-26 derived exosomes.

Results

A 10 Gy radiation dose did not significantly affect the proliferation of CT-26 cells. Radiation did not significantly alter the morphology or secretion quantity of exosomes released by CT-26 cells, but it modified the proportions of some non-coding RNAs and the composition of metabolites within the exosomes. Differential metabolite enrichment analysis revealed that the altered metabolites in exosomes from irradiated CT-26 cells were primarily enriched in immune-related metabolic pathways such as neuroactive ligand-receptor interaction, serotonergic synapse, retinoic acid metabolism, and sphingolipid metabolism. Compared to the blank group, CT-26 exosomes (control group) suppressed CD8+T cell function (blank group vs. control group: CD44+CD8+T cells: 60.720±3.529 vs. 42.640±2.378, t=9.501, P<0.001; IFN-γ+CD8+T cells: 2.362±0.418 vs. 1.632±0.198, t=3.532, P=0.008). However, exosomes from irradiated CT-26 cells reversed this suppression, restoring CD8+T cell function to a level close to that of the blank group (radiation group vs. control group: CD44+CD8+T cells: 61.720±3.891 vs. 42.640±2.378, t=9.357, P<0.001; IFN-γ+CD8+T cells: 2.512±0.469 vs. 1.632±0.198, t=3.858, P=0.010).

Conclusion

Radiotherapy can reprogram the metabolism of exosomes derived from MSS colorectal cancer cells, thereby activating the anti-tumor immune function of CD8+T cells.

图1 MSS型结直肠癌细胞放疗剂量的选择。1A:0 Gy、10 Gy及20 Gy放疗剂量处理后,CT-26细胞增殖水平;1B:0 Gy及10 Gy放疗剂量处理后,CT-26细胞凋亡变化
图2 放疗对MSS结直肠癌细胞外泌体分泌及非编码RNA的影响。2A:放疗后CT-26外泌体电镜下形态;2B:放疗后CT-26外泌体分泌量Western blot检测结果
图3 放疗通过改变CT-26外泌体代谢物影响抗肿瘤免疫。3A:放疗后CT-26外泌体转录组差异主成分分析图;3B:放疗后CT-26外泌体转录组变化火山图;3C:放疗后CT-26外泌体中非编码RNA变化热图;3D:放疗后CT-26外泌体代谢组差异主成分分析图;3E:放疗后CT-26外泌体代谢组变化火山图;3F:放疗后CT-26外泌体中代谢无上调下调数目;3G:放疗后CT-26外泌体中代谢物变化热图;3H:放疗后CT-26外泌体中代谢物变化富集结果
图4 放射处理后CT-26外泌体激活CD8+T细胞功能。4A:CD8+T细胞-外泌体共培养模式图;4B:对照组CT-26外泌体抑制CD8+T细胞功能,放疗后CT-26外泌体逆转此过程,重新激活CD8+T细胞功能
[1]
Wang F, Chen G, Zhang Z, et al. The Chinese society of clinical oncology (CSCO): clinical guidelines for the diagnosis and treatment of colorectal cancer, 2024 update[J]. Cancer Commun (Lond), 2025, 45(3): 332-379.
[2]
Wang ZX, Peng J, Liang X, et al. First-line serplulimab in metastatic colorectal cancer: Phase 2 results of a randomized, double-blind, phase 2/3 trial[J]. Med, 2024, 5(9): 1150-1163.
[3]
Xie M, Yuan K, Zhang Y, et al. Tumor-resident probiotic Clostridium butyricum improves aPD-1 efficacy in colorectal cancer models by inhibiting IL-6-mediated immunosuppression[J]. Cancer Cell, 2025, 43(10): 1885-1901.
[4]
Cai L, Chen A, Tang D. A new strategy for immunotherapy of microsatellite-stable (MSS)-type advanced colorectal cancer: multi-pathway combination therapy with PD-1/PD-L1 inhibitors[J]. Immunology, 2024, 173(2): 209-226.
[5]
Yu L, Guo Q, Gu X, et al. Impact of gut microbiome on radiotherapy and immunotherapy efficacy in microsatellite-stable colorectal cancer: role of propionic acid and B. fragilis[J]. Br J Cancer, 2025, 133(7): 956-969.
[6]
Zhu L, Tang Z, Jiang W, et al. Cholesterol biosynthesis induced by radiotherapy inhibits cGAS-STING activation and contributes to colorectal cancer treatment resistance[J]. Exp Mol Med, 2025, 57(5): 1089-1105.
[7]
Liu H, Wang G, Li Z, et al. Exosome-based immunotherapy in hepatocellular carcinoma[J]. Clin Exp Med, 2025, 25(1): 127.
[8]
Ye J, Li D, Jie Y, et al. Exosome-based nanoparticles and cancer immunotherapy[J]. Biomed Pharmacother, 2024, 179: 117296.
[9]
Ahmed A, Tait SWG. Targeting immunogenic cell death in cancer[J]. Mol Oncol, 2020, 14(12): 2994-3006.
[10]
Hsieh RC, Krishnan S, Wu RC, et al. ATR-mediated CD47 and PD-L1 up-regulation restricts radiotherapy-induced immune priming and abscopal responses in colorectal cancer[J]. Sci Immunol, 2022, 7(72): eabl9330.
[11]
Theelen WSME, Peulen HMU, Lalezari F, et al. Effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer: results of the PEMBRO-RT phase 2 randomized clinical trial[J]. JAMA Oncol, 2019, 5(9): 1276-1282.
[12]
Tian Y, Liu C, Li Z, et al. Exosomal B7-H4 from irradiated glioblastoma cells contributes to increase FoxP3 expression of differentiating Th1 cells and promotes tumor growth[J]. Redox Biol, 2022, 56: 102454.
[13]
Krylova SV, Feng D. The machinery of exosomes: biogenesis, release, and uptake[J]. Int J Mol Sci, 2023, 24(2): 1337.
[14]
Sun B, Zhou Y, Fang Y, et al. Colorectal cancer exosomes induce lymphatic network remodeling in lymph nodes[J]. Int J Cancer, 2019, 145(6): 1648-1659.
[15]
Liu X, Jiang S, Jiang T, et al. Bioenergetic-active exosomes for cartilage regeneration and homeostasis maintenance[J]. Sci Adv, 2024, 10(42): eadp7872.
[16]
Wang X, Fang Y, Liang W, et al. Fusobacterium nucleatum facilitates anti-PD-1 therapy in microsatellite stable colorectal cancer[J]. Cancer Cell, 2024, 42(10): 1729-1746.
[17]
Tian S, Wang F, Zhang R, et al. Global pattern of CD8(+) T-cell infiltration and exhaustion in colorectal cancer predicts cancer immunotherapy response[J]. Front Pharmacol, 2021, 12: 715721.
[18]
Obers A, Poch T, Rodrigues G, et al. Retinoic acid and TGF-beta orchestrate organ-specific programs of tissue residency[J]. Immunity, 2024, 57(11): 2615-2633.
[19]
Li J, Huang K, Yang B, et al. ATRA upregulates OTUD6B to recruit CD8(+) T cells to suppress colorectal liver metastasis by stabilizing DDX5/STAT3/CXCL11 axis[J]. Cell Death Dis, 2025, 16(1): 521.
[20]
Lv Y, Chen D, Tian X, et al. Protectin conjugates in tissue regeneration 1 alleviates sepsis-induced acute lung injury by inhibiting ferroptosis[J]. J Transl Med, 2023, 21(1): 293.
[21]
Derada Troletti C, Enzmann G, Chiurchiù V, et al. Pro-resolving lipid mediator lipoxin A(4) attenuates neuro-inflammation by modulating T cell responses and modifies the spinal cord lipidome[J]. Cell Rep, 2021, 35(9): 109201.
[22]
Li W, Zhong Q, Deng N, et al. Sphingolipid metabolism-related genes for the diagnosis of metabolic syndrome by integrated bioinformatics analysis and Mendelian randomization identification[J]. Diabetol Metab Syndr, 2025, 17(1): 234.
[23]
Chen Y, Zhao N, Xu L, et al. Integrative multi-omics analysis reveals the LncRNA 60967.1-PLCD4-ATRA axis as a key regulator of colorectal cancer progression and immune response[J]. Mol Cancer, 2025, 24(1): 164.
[24]
Soula M, Unlu G, Welch R, et al. Glycosphingolipid synthesis mediates immune evasion in KRAS-driven cancer[J]. Nature, 2024, 633(8029): 451-458.
[25]
Zhai S, You Z, Li J, et al. Hybrid-ligand metal-organic frameworks enabling radio-radiodynamic-chemodynamic therapy primes checkpoint blockade immunotherapy in hypoxic tumors[J]. ACS Nano, 2025, 19(33): 30100-30114.
[26]
Zhai D, An D, Wan C, et al. Radiotherapy: brightness and darkness in the era of immunotherapy[J]. Transl Oncol, 2022, 19: 101366.
[27]
Yin X, Ding Z, Yu L, et al. Orchestrating intratumoral DC-T cell immunity for enhanced tumor control via radiotherapy-activated TLR7/8 prodrugs in mice[J]. Nat Commun, 2025, 16(1): 6020.
[1] 王欢, 雷琳, 刘梦瑶, 朱娟娟, 郭王斌. 特发性肺纤维化患者血清LncRNA-GAS5、miR-221-3p与肺动脉高压的相关性研究[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(05): 382-389.
[2] 严征远, 张恒, 曹能琦, 方兴超, 陈大敏. 单孔+1腹腔镜结直肠癌根治切除术的有效性及安全性临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 615-618.
[3] 曾慧, 刘朝朝, 牛雷, 邓雅洁, 徐礼霞, 沙莎. 早期肺腺癌血清外泌体miRNA特征谱及诊断标志物筛选研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 891-896.
[4] 朱俊畅, 叶乐驰. 术中人工智能技术在结直肠癌微创手术中的现状与未来[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(05): 316-320.
[5] 蔡建珊, 陈进宏. 同时性结直肠癌肝转移手术策略[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 813-821.
[6] 吴刚, 严燃星, 严鑫, 阎婧, 何跃明, 朱倩. 基于血清和组织外泌体多组学分析筛选胰腺癌诊断和预后标志物[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 962-972.
[7] 郑哲宇, 张磊, 张大伟, 潘卫东, 黄晓明. 全腹腔镜下ALPPS治疗结直肠癌肝转移的安全性和疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 748-753.
[8] 潘胜淇, 李兴源, 王佳琦, 关竣庭, 丁可, 常泽文, 汤庆超. 三臂与四臂达芬奇机器人手术系统在乙状结肠与中高位直肠癌根治术中应用的近期疗效比较[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(06): 509-515.
[9] 关旭, 杨明. 中国微创手术的光辉历程与经自然腔道取标本手术的革新之路[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(05): 385-388.
[10] 中国医师协会外科医师分会, 中华医学会外科分会胃肠外科学组, 中华医学会外科分会结直肠外科学组, 中国抗癌协会大肠癌专业委员会, 中国医师协会结直肠肿瘤专业委员会, 中国临床肿瘤学会结直肠癌专家委员会, 中国医师协会外科医师分会结直肠外科医师委员会, 中国医师协会肛肠医师分会肿瘤转移委员会, 中华医学会肿瘤学分会结直肠肿瘤学组, 中国医疗保健国际交流促进会转移肿瘤治疗学分会, 中国医疗保健国际交流促进会结直肠病分会. 结直肠癌肝转移诊断和综合治疗指南(V 2025)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(05): 398-411.
[11] 中国抗癌协会NOSES专业委员会, 中国抗癌协会大肠癌专业委员会. 肿瘤整合诊治技术指南·NOSES技术(结直肠癌部分)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(05): 412-416.
[12] 赵南, 张明凯, Bhargava Divija, 赵世光, 张大明. 结直肠癌脑转移的临床特征与治疗策略进展[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(05): 427-435.
[13] 张娴, 王彬瞻, 王馨媛, 罗再, 王庆国, 程云章, 黄陈. 基于增强CT的二维、三维影像组学和联合模型对术前预测结直肠癌脉管侵犯价值研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(05): 457-467.
[14] 马剑波, 许浩, 陈一笑. 人脐带间充质干细胞来源外泌体对脑出血后炎症反应和神经损伤的作用机制[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(05): 280-289.
[15] 李志银, 郗海涛, 陈倩, 闫旭玲, 孟丽霞. 血清长链非编码RNA ZEB1-AS1对双重抗血小板治疗的缺血性脑卒中患者复发的预测价值[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(05): 411-417.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?