| [1] |
Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, et al. Colorectal Carcinoma: a general overview and future perspectives in colorectal cancer[J]. Int J Mol Sci, 2017, 18(1): 197.
|
| [2] |
Brody H. Colorectal cancer[J]. Nature, 2015, 521(7551): S1.
|
| [3] |
Akagi T, Inomata M. Essential advances in surgical and adjuvant therapies for colorectal cancer 2018-2019[J]. Ann Gastroenterol Surg, 2020, 4(1): 39-46.
|
| [4] |
Boselli C, Renzi C, Gemini A, et al. Surgery in asymptomatic patients with colorectal cancer and unresectable liver metastases: the authors’ experience[J]. Onco Targets Ther, 2013, 6: 267-272.
|
| [5] |
Goka ET, Chaturvedi P, Lopez DTM, et al. RAC1b overexpression confers resistance to chemotherapy treatment in colorectal cancer[J]. Mol Cancer Ther, 2019, 18(5): 957-968.
|
| [6] |
Zhang R, Liu S, Gong B, et al. Kif4A mediates resistance to neoadjuvant chemoradiotherapy in patients with advanced colorectal cancer via regulating DNA damage response[J]. Acta Biochim Biophys Sin (Shanghai), 2022, 54(7): 940-951.
|
| [7] |
Jácome AA, Eng C. Role of immune checkpoint inhibitors in the treatment of colorectal cancer: focus on nivolumab[J]. Expert Opin Biol Ther, 2019, 19(12): 1247-1263.
|
| [8] |
Ghidini M, Fusco N, Salati M, et al. The emergence of immune-checkpoint inhibitors in colorectal cancer therapy[J]. Curr Drug Targets, 2021, 22(9): 1021-1033.
|
| [9] |
Eggermont A, Robert C, Soria JC, et al. Harnessing the immune system to provide long-term survival in patients with melanoma and other solid tumors[J]. Oncoimmunology, 2014, 3(1): e27560.
|
| [10] |
Choi BK, Kim SH, Kim YH, et al. Cancer immunotherapy using tumor antigen-reactive T cells[J]. Immunotherapy, 2018, 10(3): 235-245.
|
| [11] |
Li Z, Wang X, Yang Y, et al. Identification and validation of RELN mutation as a response indicator for immune checkpoint inhibitor therapy in melanoma and non-small cell lung cancer[J]. Cells, 2022, 11(23): 3841.
|
| [12] |
Zhang B, Liu J, Mo Y, et al. CD8(+) T cell exhaustion and its regulatory mechanisms in the tumor microenvironment: key to the success of immunotherapy[J]. Front Immunol, 2024, 15: 1476904.
|
| [13] |
Long Z, Sun C, Tang M, et al. Single-cell multiomics analysis reveals regulatory programs in clear cell renal cell carcinoma[J]. Cell Discov, 2022, 8(1): 68.
|
| [14] |
Oliveira G, Stromhaug K, Cieri N, et al. Landscape of helper and regulatory antitumour CD4(+) T cells in melanoma[J]. Nature, 2022, 605(7910): 532-538.
|
| [15] |
Zhao Y, Shao Q, Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment[J]. Cell Mol Immunol, 2020, 17(1): 27-35.
|
| [16] |
Soto-Heredero G, Desdín-Micó G, Mittelbrunn M. Mitochondrial dysfunction defines T cell exhaustion[J]. Cell Metab, 2021, 33(3): 470-472.
|
| [17] |
Rong D, Sun G, Zheng Z, et al. MGP promotes CD8(+) T cell exhaustion by activating the NF-κB pathway leading to liver metastasis of colorectal cancer [J]. Int J Biol Sci, 2022, 18(6): 2345-2361.
|
| [18] |
Balança CC, Scarlata CM, Michelas M, et al. Dual relief of t-lymphocyte proliferation and effector function underlies response to PD-1 blockade in epithelial malignancies[J]. Cancer Immunol Res, 2020, 8(7): 869-882.
|
| [19] |
Frey B, Rubner Y, Wunderlich R, et al. Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation - implications for cancer therapies[J]. Curr Med Chem, 2012, 19(12): 1751-1764.
|
| [20] |
Lhuillier C, Rudqvist NP, Yamazaki T, et al. Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control[J]. J Clin Invest, 2021, 131(5): e138740.
|