切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2025, Vol. 14 ›› Issue (02) : 161 -165. doi: 10.3877/cma.j.issn.2095-3224.2025.02.008

综述

肠道菌群与慢传输型便秘机制相关研究进展
刘昀坤1,2,3,4, 孟彩祥5, 王乐1,2,3,4, 徐越1,2,3,4, 叶晨1,2,3,4, 李龙1,2,3,4, 李宁1,2,3,4, 陈启仪1,2,3,4,()   
  1. 1. 200000 上海市,同济大学附属第十人民医院普通外科功能肠道外科,同济大学医学院
    2. 200000 上海市肠道微生态研究中心
    3. 200000 上海人体肠道菌群功能开发工程技术研究中心
    4. 200000 上海市,同济大学医学院消化系统疾病临床研究中心
    5. 066003 秦皇岛市第一医院普通外科二科
  • 收稿日期:2024-11-18 出版日期:2025-04-25
  • 通信作者: 陈启仪
  • 基金资助:
    国家自然科学基金项目(No. 82470701)

Research advances on the mechanism of slow transit constipation associated with intestinal microbiota

Yunkun Liu1,2,3,4, Caixiang Meng5, Le Wang1,2,3,4, Yue Xu1,2,3,4, Chen Ye1,2,3,4, Long Li1,2,3,4, Ning Li1,2,3,4, Qiyi Chen1,2,3,4,()   

  1. 1. Department of Functional Intestinal Diseases,General Surgery of Shanghai Tenth People's Hospital,Tongji University School of Medicine,Shanghai 200000,China
    2. Shanghai Gastrointestinal Microecology Research Center,Shanghai 200000,China
    3. Shanghai Institution of Gut Microbiota Research and Engineering Development,Shanghai 200000,China
    4. Clinical Research Center for Digestive Diseases,Tongji University School of Medicine,Shanghai 200000,China
    5. econd Department of General Surgery of First Hospital of Qinhuangdao,Qinhuangdao 066003,China
  • Received:2024-11-18 Published:2025-04-25
  • Corresponding author: Qiyi Chen
引用本文:

刘昀坤, 孟彩祥, 王乐, 徐越, 叶晨, 李龙, 李宁, 陈启仪. 肠道菌群与慢传输型便秘机制相关研究进展[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 161-165.

Yunkun Liu, Caixiang Meng, Le Wang, Yue Xu, Chen Ye, Long Li, Ning Li, Qiyi Chen. Research advances on the mechanism of slow transit constipation associated with intestinal microbiota[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2025, 14(02): 161-165.

慢传输型便秘(STC)是一种复杂的慢性功能性胃肠道疾病,其病因涉及肠道动力障碍、神经调控异常和微生物组失衡。近年来,肠道菌群在STC发病机制中的作用备受关注。研究表明,肠道微生物的组成、代谢产物及其与宿主免疫系统的相互作用,在STC的发生与进展中发挥了重要作用。本综述总结了肠道菌群与STC的关联性,探讨其通过调控神经功能、炎症反应和肠道蠕动影响STC的机制。此外,还介绍了基于微生物组的干预疗法(如益生菌和粪菌移植)在STC治疗中的潜力,为未来的研究和治疗提供新思路和参考。

Slow transit constipation (STC) is a complex chronic functional gastrointestinal disorder involving intestinal motility dysfunction,abnormal neural regulation,and dysbiosis of the gut microbiota.In recent years,the role of the gut microbiota in the pathogenesis of STC has gained increasing attention.Studies have shown that the composition of the gut microbiota,its metabolites,and its interactions with the host immune system play a crucial role in the development and progression of STC. This review summarizes the relationship between the gut microbiota and STC,exploring the mechanisms by which the microbiota regulates neural function,inflammatory responses,and intestinal motility. Additionally,the potential of microbiota-based interventions,such as probiotics and fecal microbiota transplantation,in the treatment of STC is discussed,providing new insights and references for future research and clinical applications.

[1]
López-Pingarrón L,Almeida H,Soria-Aznar M,et al. Interstitial cells of cajal and enteric nervous system in gastrointestinal and neurological pathology,relation to oxidative stress[J]. Curr Issues Mol Biol,2023,45(4):3552-3572.
[2]
Choi EL,Taheri N,Tan E,et al. The crucial role of the interstitial cells of cajal in neurointestinal diseases[J]. Biomolecules,2023,13(9):1358.
[3]
Corsetti M,Costa M,Bassotti G,et al. First translational consensus on terminology and definitions of colonic motility in animals and humans studied by manometric and other techniques[J]. Nat Rev Gastroenterol Hepatol,2019,16(9):559-579.
[4]
Spencer NJ,Hibberd TJ,Travis L,et al. Identification of a rhythmic firing pattern in the enteric nervous system that generates rhythmic electrical activity in smooth muscle[J]. J Neurosci,2018,38(24):5507-5522.
[5]
Li Z,Hao MM,Van den Haute C,et al. Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine[J]. Elife,2019,8:e42914.
[6]
Kishi K,Kamizaki M,Kaji N,et al. A close relationship between networks of interstitial cells of cajal and gastrointestinal transit in vivo[J]. Front Pharmacol,2020,11:587453.
[7]
Mao YK,Kasper DL. Bacterial interactions with the nervous system[J]. Nat Rev Microbiol,2017,15(10):563-576.
[8]
Sharkey KA,Mawe GM. Neuroimmune and microbiota interactions in the gut[J]. Nat Rev Gastroenterol Hepatol,2020,17(12):707-720.
[9]
Mazzoli R,Pessione E. The neuro-endocrinological role of microbial glutamate and GABA signaling[J]. Front Microbiol,2016,7:1934.
[10]
Cryan JF,O'Riordan KJ,Cowan CSM,et al. The microbiota-gut-brain axis[J]. Physiol Rev,2019,99(4):1877-2013.
[11]
Yano JM,Yu K,Donaldson GP,et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell,2015,161(2):264-276.
[12]
Kunze WA,Mao YK,Wang B,et al. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening[J]. J Cell Mol Med,2009,13(8B):2261-2270.
[13]
Mann ER,Lam YK,Uhlig HH. Short-chain fatty acids:linking diet,the microbiome and immunity[J]. Nat Rev Immunol,2024,24(8):577-595.
[14]
Rekha K,Venkidasamy B,Samynathan R,et al. Short-chain fatty acid:an updated review on signaling,metabolism,and therapeutic effects[J]. Crit Rev Food Sci Nutr,2024,64(9):2461-2489.
[15]
Ducastel S,Touche V,Trabelsi MS,et al. The nuclear receptor FXR inhibits Glucagon-Like Peptide-1 secretion in response to microbiotaderived short-chain fatty acids[J]. Sci Rep,2020,10(1):174.
[16]
Donohoe DR,Garge N,Zhang X,et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon[J]. Cell Metab,2011,13(5):517-526.
[17]
Nishimura J,Fukunaga S. Butyrate and intestinal barrier function:recent insights into molecular mechanisms[J]. J Physiol Pharmacol,2022,73(3):487-492.
[18]
Dalile B,Van Oudenhove L,Vervliet B,et al. The role of shortchain fatty acids in microbiota-gut-brain communication[J]. Nat Rev Gastroenterol Hepatol,2019,16(8):461-478.
[19]
Konopelski P,Mogilnicka I. Biological effects of indole-3-propionic acid,a gut microbiota-derived metabolite,and its precursor tryptophan in mammals' health and disease[J]. Int J Mol Sci,2022,23(3):1222.
[20]
Buey B,Forcén A,Grasa L,et al. Gut microbiota-derived short-chain fatty acids:novel regulators of intestinal serotonin transporter[J]. Life(Basel),2023,13(5):1085.
[21]
Wang W,Chen L,Zhou R,et al. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrateproducing bacteria in inflammatory bowel disease[J]. J Clin Microbiol,2014,52(2):398-406.
[22]
Hendrikx T,Schnabl B. Indoles:metabolites produced by intestinal bacteria capable of controlling liver disease manifestation[J]. J Intern Med,2019,286(1):32-40.
[23]
Busbee PB,Rouse M,Nagarkatti M,et al. Indole-3-carbinol (I3C)prevents colitis and restores intestinal integrity in mice through the activation of aryl hydrocarbon receptor (AhR)[J]. Front Immunol,2020,11:1213.
[24]
Nauta A,Scott K,Stahl B,et al. Short chain fatty acids in human gut and metabolic health[J]. Benef Microbes,2020,11(5):411-455.
[25]
Jin D,Wu S,Zhang Y,et al. Regulation of the formation of short-chain fatty acids from dietary fiber and its impact on human health[J]. Front Microbiol,2019,10:12.
[26]
Guo Z,Wu D. Bile acid diarrhea:from molecular mechanisms to clinical diagnosis and treatment[J]. Int J Mol Sci,2024,25(3):1544.
[27]
Heinken A,Ravcheev DA,Baldini F,et al. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease[J]. Microbiome,2019,7(1):75.
[28]
Fiorucci S,Biagioli M. Bile acid metabolism and signaling in liver disease[J]. J Hepatol,2023,78(1):251-265.
[29]
Foley MH,O'Flaherty S,Barrangou R,et al. Bile salt hydrolases:gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract[J]. PLoS Pathog,2019,15(3):e1007581.
[30]
Zhang YL,Li ZJ,Gou HZ,et al. The gut microbiota-bile acid axis:a potential therapeutic target for liver fibrosis[J]. Front Cell Infect Microbiol,2022,12:945368.
[31]
Ji Y,Yin Y,Li Z,et al. Gut microbiota-derived components and metabolites in the progression of non-alcoholic fatty liver disease(NAFLD)[J]. Nutrients,2019,11(8):1712.
[32]
Chen S,Lei Q,Zou X,et al. The role and mechanisms of gramnegative bacterial outer membrane vesicles in inflammatory diseases[J]. Front Immunol,2023,14:1157813.
[33]
Lieberman LA. Outer membrane vesicles:a bacterial-derived vaccination system[J]. Front Microbiol,2022,13:1029146.
[34]
Ismail S,Hampton MB,Keenan JI. Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 production by gastric epithelial cells[J]. Infect Immun,2003,71(10):5670-5675.
[35]
Lee JC,Lee EJ,Lee JH,et al. Klebsiella pneumoniae secretes outer membrane vesicles that induce the innate immune response[J]. FEMS Microbiol Lett,2012,331(1):17-24.
[36]
Margutti P,D'Ambrosio A,Zamboni S. Microbiota-derived extracellular vesicle as emerging actors in host interactions[J]. Int J Mol Sci,2024,25(16):8722.
[37]
Carbonero F,Benefiel AC,Gaskins HR. Contributions of the microbial hydrogen economy to colonic homeostasis[J]. Nat Rev Gastroenterol Hepatol,2012,9(9):504-518.
[38]
Buret AG,Allain T,Motta JP,et al. Effects of hydrogen sulfide on the microbiome:from toxicity to therapy[J]. Antioxid Redox Signal,2022,36(4-6):211-219.
[39]
Hoegenauer C,Hammer HF,Mahnert A,et al. Methanogenic archaea in the human gastrointestinal tract[J]. Nat Rev Gastroenterol Hepatol,2022,19(12):805-813.
[40]
Gasaly N,de Vos P,Hermoso MA. Impact of bacterial metabolites on gut barrier function and host immunity:a focus on bacterial metabolism and its relevance for intestinal inflammation[J]. Front Immunol,2023,14:1187292.
[41]
Naschla G,de Vos P,Hermoso MA. Crosstalk between gut microbiota and host immunity:regulation of intestinal inflammation[J].Microbiome,2023,11(1):75.
[42]
Craven DE,Stephens DS,Edwards KM. The role of bacterial products in immune modulation during gut inflammation[J]. Genome Med,2023,15(3):254-267.
[43]
Chelakkot C,Choi Y,Kim DK,et al. Akkermansia muciniphila-derived extracellular vesicles enhance gut barrier function via upregulation of tight junction proteins[J]. Front Microbiol,2018,9:2179.
[44]
Cani PD,de Vos WM. Next-generation beneficial microbes:the case of Akkermansia muciniphila[J]. Front Microbiol,2017,8:1765.
[45]
Holmberg SM,Feeney RH,Prasoodanan PKV,et al. The gut commensal Blautia maintains colonic mucus function under lowfiber consumption through secretion of short-chain fatty acids[J]. Nat Commun,2024,15(1):3502.
[46]
van der Post S,Jabbar KS,Birchenough G,et al. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis[J]. Gut,2019,68(12):2142-2151.
[47]
Gadaleta RM,van Erpecum KJ,Oldenburg B,et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease[J]. Gut,2011,60(4):463-472.
[48]
Boekhorst J,Venlet N,Procházková N,et al. Stool energy density is positively correlated to intestinal transit time and related to microbial enterotypes[J]. Microbiome,2022,10(1):223.
[49]
Letourneau J,Carrion VM,Jiang S,et al. Interplay between particle size and microbial ecology in the gut microbiome[J]. ISME J,2024,18(1):wrae168.
[50]
Wang J,Zhu N,Su X,et al. Gut-microbiota-derived metabolites maintain gut and systemic immune homeostasis[J]. Cells,2023,12(5):793.
[51]
Tian H,Zhang S,Qin H,et al. Long-term safety of faecal microbiota transplantation for gastrointestinal diseases in China[J]. Lancet Gastroenterol Hepatol,2022,7(8):702-703.
[52]
Gu X,Yang Z,Kou Y,et al. Effects of retrograde colonic enemabased fecal microbiota transplantation in the treatment of childhood constipation:a randomized,double-blind,controlled trial[J]. Am J Gastroenterol,2024,119(11):2288-2297.
[1] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[2] 颜希文, 刘惠媛. 终末期肝病合并感染的发病机制及防治策略[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(01): 39-43.
[3] 李玲, 刘亚, 李培玲, 张秀敏, 李萍. 直肠癌患者术后肠道菌群的变化与抑郁症相关性研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 607-610.
[4] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[5] 邓玮, 周筛兰, 杨波, 林志亮. 肠道菌群移植治疗便秘患者出院准备度现状及影响因素分析[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 148-154.
[6] 朱万涌, 王乐, 徐越, 王新军, 叶晨, 李宁, 陈启仪, 李龙. 肠道菌群失衡与功能性肠病:从机制探讨到肠菌移植疗法[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 142-147.
[7] 陈俊夫, 吴纪霞, 田宏亮, 马静. 肠道菌群移植对菌-肠-脑轴疾病的治疗研究进展[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 136-141.
[8] 陈志, 李猛, 万修华. 肠道菌群与干眼的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(01): 55-59.
[9] 尚伟锋, 陈德昌. 基于肠道菌群探讨脓毒症相关脑病治疗的新靶点[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 31-35.
[10] 王玉琳, 王中华, 刘子文, 吕梦鑫, 于源滋, 李涛, 胡锦华, 张小茜. 肝硬化消化道出血患者经颈静脉肝内门体分流术前后肠道微生态的宏基因组学分析[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 135-143.
[11] 杜宝静, 李敏叶, 王云霞, 申永静, 谈威威. 轮状病毒感染相关腹泻患儿肠道菌群特征与血清锌、肌酸激酶同工酶及炎症因子的关系[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(01): 78-82.
[12] 赵小民, 杨军, 田巍巍. 枳术颗粒联合利那洛肽治疗便秘型肠易激综合征的临床研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 465-469.
[13] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[14] 盛鹏, 柏立哲, 张靖, 李丹, 曹宏. 低聚半乳糖增强去卵巢小鼠肠道屏障功能预防骨质流失[J/OL]. 中华临床医师杂志(电子版), 2025, 19(01): 48-57.
[15] 邓垚, 谢壁成, 吴边, 兰丹凤. 减重手术对肠道菌群及代谢性炎症综合征影响的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2025, 11(01): 70-75.
阅读次数
全文


摘要