[1] |
López-Pingarrón L,Almeida H,Soria-Aznar M,et al. Interstitial cells of cajal and enteric nervous system in gastrointestinal and neurological pathology,relation to oxidative stress[J]. Curr Issues Mol Biol,2023,45(4):3552-3572.
|
[2] |
Choi EL,Taheri N,Tan E,et al. The crucial role of the interstitial cells of cajal in neurointestinal diseases[J]. Biomolecules,2023,13(9):1358.
|
[3] |
Corsetti M,Costa M,Bassotti G,et al. First translational consensus on terminology and definitions of colonic motility in animals and humans studied by manometric and other techniques[J]. Nat Rev Gastroenterol Hepatol,2019,16(9):559-579.
|
[4] |
Spencer NJ,Hibberd TJ,Travis L,et al. Identification of a rhythmic firing pattern in the enteric nervous system that generates rhythmic electrical activity in smooth muscle[J]. J Neurosci,2018,38(24):5507-5522.
|
[5] |
Li Z,Hao MM,Van den Haute C,et al. Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine[J]. Elife,2019,8:e42914.
|
[6] |
Kishi K,Kamizaki M,Kaji N,et al. A close relationship between networks of interstitial cells of cajal and gastrointestinal transit in vivo[J]. Front Pharmacol,2020,11:587453.
|
[7] |
Mao YK,Kasper DL. Bacterial interactions with the nervous system[J]. Nat Rev Microbiol,2017,15(10):563-576.
|
[8] |
Sharkey KA,Mawe GM. Neuroimmune and microbiota interactions in the gut[J]. Nat Rev Gastroenterol Hepatol,2020,17(12):707-720.
|
[9] |
Mazzoli R,Pessione E. The neuro-endocrinological role of microbial glutamate and GABA signaling[J]. Front Microbiol,2016,7:1934.
|
[10] |
Cryan JF,O'Riordan KJ,Cowan CSM,et al. The microbiota-gut-brain axis[J]. Physiol Rev,2019,99(4):1877-2013.
|
[11] |
Yano JM,Yu K,Donaldson GP,et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell,2015,161(2):264-276.
|
[12] |
Kunze WA,Mao YK,Wang B,et al. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening[J]. J Cell Mol Med,2009,13(8B):2261-2270.
|
[13] |
Mann ER,Lam YK,Uhlig HH. Short-chain fatty acids:linking diet,the microbiome and immunity[J]. Nat Rev Immunol,2024,24(8):577-595.
|
[14] |
Rekha K,Venkidasamy B,Samynathan R,et al. Short-chain fatty acid:an updated review on signaling,metabolism,and therapeutic effects[J]. Crit Rev Food Sci Nutr,2024,64(9):2461-2489.
|
[15] |
Ducastel S,Touche V,Trabelsi MS,et al. The nuclear receptor FXR inhibits Glucagon-Like Peptide-1 secretion in response to microbiotaderived short-chain fatty acids[J]. Sci Rep,2020,10(1):174.
|
[16] |
Donohoe DR,Garge N,Zhang X,et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon[J]. Cell Metab,2011,13(5):517-526.
|
[17] |
Nishimura J,Fukunaga S. Butyrate and intestinal barrier function:recent insights into molecular mechanisms[J]. J Physiol Pharmacol,2022,73(3):487-492.
|
[18] |
Dalile B,Van Oudenhove L,Vervliet B,et al. The role of shortchain fatty acids in microbiota-gut-brain communication[J]. Nat Rev Gastroenterol Hepatol,2019,16(8):461-478.
|
[19] |
Konopelski P,Mogilnicka I. Biological effects of indole-3-propionic acid,a gut microbiota-derived metabolite,and its precursor tryptophan in mammals' health and disease[J]. Int J Mol Sci,2022,23(3):1222.
|
[20] |
Buey B,Forcén A,Grasa L,et al. Gut microbiota-derived short-chain fatty acids:novel regulators of intestinal serotonin transporter[J]. Life(Basel),2023,13(5):1085.
|
[21] |
Wang W,Chen L,Zhou R,et al. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrateproducing bacteria in inflammatory bowel disease[J]. J Clin Microbiol,2014,52(2):398-406.
|
[22] |
Hendrikx T,Schnabl B. Indoles:metabolites produced by intestinal bacteria capable of controlling liver disease manifestation[J]. J Intern Med,2019,286(1):32-40.
|
[23] |
Busbee PB,Rouse M,Nagarkatti M,et al. Indole-3-carbinol (I3C)prevents colitis and restores intestinal integrity in mice through the activation of aryl hydrocarbon receptor (AhR)[J]. Front Immunol,2020,11:1213.
|
[24] |
Nauta A,Scott K,Stahl B,et al. Short chain fatty acids in human gut and metabolic health[J]. Benef Microbes,2020,11(5):411-455.
|
[25] |
Jin D,Wu S,Zhang Y,et al. Regulation of the formation of short-chain fatty acids from dietary fiber and its impact on human health[J]. Front Microbiol,2019,10:12.
|
[26] |
Guo Z,Wu D. Bile acid diarrhea:from molecular mechanisms to clinical diagnosis and treatment[J]. Int J Mol Sci,2024,25(3):1544.
|
[27] |
Heinken A,Ravcheev DA,Baldini F,et al. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease[J]. Microbiome,2019,7(1):75.
|
[28] |
Fiorucci S,Biagioli M. Bile acid metabolism and signaling in liver disease[J]. J Hepatol,2023,78(1):251-265.
|
[29] |
Foley MH,O'Flaherty S,Barrangou R,et al. Bile salt hydrolases:gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract[J]. PLoS Pathog,2019,15(3):e1007581.
|
[30] |
Zhang YL,Li ZJ,Gou HZ,et al. The gut microbiota-bile acid axis:a potential therapeutic target for liver fibrosis[J]. Front Cell Infect Microbiol,2022,12:945368.
|
[31] |
Ji Y,Yin Y,Li Z,et al. Gut microbiota-derived components and metabolites in the progression of non-alcoholic fatty liver disease(NAFLD)[J]. Nutrients,2019,11(8):1712.
|
[32] |
Chen S,Lei Q,Zou X,et al. The role and mechanisms of gramnegative bacterial outer membrane vesicles in inflammatory diseases[J]. Front Immunol,2023,14:1157813.
|
[33] |
Lieberman LA. Outer membrane vesicles:a bacterial-derived vaccination system[J]. Front Microbiol,2022,13:1029146.
|
[34] |
Ismail S,Hampton MB,Keenan JI. Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 production by gastric epithelial cells[J]. Infect Immun,2003,71(10):5670-5675.
|
[35] |
Lee JC,Lee EJ,Lee JH,et al. Klebsiella pneumoniae secretes outer membrane vesicles that induce the innate immune response[J]. FEMS Microbiol Lett,2012,331(1):17-24.
|
[36] |
Margutti P,D'Ambrosio A,Zamboni S. Microbiota-derived extracellular vesicle as emerging actors in host interactions[J]. Int J Mol Sci,2024,25(16):8722.
|
[37] |
Carbonero F,Benefiel AC,Gaskins HR. Contributions of the microbial hydrogen economy to colonic homeostasis[J]. Nat Rev Gastroenterol Hepatol,2012,9(9):504-518.
|
[38] |
Buret AG,Allain T,Motta JP,et al. Effects of hydrogen sulfide on the microbiome:from toxicity to therapy[J]. Antioxid Redox Signal,2022,36(4-6):211-219.
|
[39] |
Hoegenauer C,Hammer HF,Mahnert A,et al. Methanogenic archaea in the human gastrointestinal tract[J]. Nat Rev Gastroenterol Hepatol,2022,19(12):805-813.
|
[40] |
Gasaly N,de Vos P,Hermoso MA. Impact of bacterial metabolites on gut barrier function and host immunity:a focus on bacterial metabolism and its relevance for intestinal inflammation[J]. Front Immunol,2023,14:1187292.
|
[41] |
Naschla G,de Vos P,Hermoso MA. Crosstalk between gut microbiota and host immunity:regulation of intestinal inflammation[J].Microbiome,2023,11(1):75.
|
[42] |
Craven DE,Stephens DS,Edwards KM. The role of bacterial products in immune modulation during gut inflammation[J]. Genome Med,2023,15(3):254-267.
|
[43] |
Chelakkot C,Choi Y,Kim DK,et al. Akkermansia muciniphila-derived extracellular vesicles enhance gut barrier function via upregulation of tight junction proteins[J]. Front Microbiol,2018,9:2179.
|
[44] |
Cani PD,de Vos WM. Next-generation beneficial microbes:the case of Akkermansia muciniphila[J]. Front Microbiol,2017,8:1765.
|
[45] |
Holmberg SM,Feeney RH,Prasoodanan PKV,et al. The gut commensal Blautia maintains colonic mucus function under lowfiber consumption through secretion of short-chain fatty acids[J]. Nat Commun,2024,15(1):3502.
|
[46] |
van der Post S,Jabbar KS,Birchenough G,et al. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis[J]. Gut,2019,68(12):2142-2151.
|
[47] |
Gadaleta RM,van Erpecum KJ,Oldenburg B,et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease[J]. Gut,2011,60(4):463-472.
|
[48] |
Boekhorst J,Venlet N,Procházková N,et al. Stool energy density is positively correlated to intestinal transit time and related to microbial enterotypes[J]. Microbiome,2022,10(1):223.
|
[49] |
Letourneau J,Carrion VM,Jiang S,et al. Interplay between particle size and microbial ecology in the gut microbiome[J]. ISME J,2024,18(1):wrae168.
|
[50] |
Wang J,Zhu N,Su X,et al. Gut-microbiota-derived metabolites maintain gut and systemic immune homeostasis[J]. Cells,2023,12(5):793.
|
[51] |
Tian H,Zhang S,Qin H,et al. Long-term safety of faecal microbiota transplantation for gastrointestinal diseases in China[J]. Lancet Gastroenterol Hepatol,2022,7(8):702-703.
|
[52] |
Gu X,Yang Z,Kou Y,et al. Effects of retrograde colonic enemabased fecal microbiota transplantation in the treatment of childhood constipation:a randomized,double-blind,controlled trial[J]. Am J Gastroenterol,2024,119(11):2288-2297.
|