切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2021, Vol. 10 ›› Issue (05) : 497 -504. doi: 10.3877/cma.j.issn.2095-3224.2021.05.009

论著

基于生物信息学的结直肠癌枢纽基因与预后相关基因筛选
李飞1, 秦强强1, 谷战峰1, 张天祥1, 申思2, 周丽2, 张乐莎3,()   
  1. 1. 230601 合肥,安徽医科大学第二临床医学院
    2. 230012 合肥,安徽中医药大学药学院
    3. 230032 合肥,安徽医科大学基础医学院生理学教研室
  • 收稿日期:2021-03-29 出版日期:2021-10-25
  • 通信作者: 张乐莎
  • 基金资助:
    国家自然科学基金青年科学基金项目(81903590)

Screening of hub genes and prognosis-related genes in colorectal cancer based on bioinformatics

Fei Li1, Qiangqiang Qin1, Zhanfeng Gu1, Tianxiang Zhang1, Si Shen2, Li Zhou2, Lesha Zhang3,()   

  1. 1. Second Institute of Clinical Medicine, Anhui Medical University, Hefei 230601, China
    2. College of Pharmacy Anhui University of Chinese Medicine, Hefei 230012, China
    3. Department of Physiology, School of Medical Sciences, Anhui Medical University, Hefei 230032, China
  • Received:2021-03-29 Published:2021-10-25
  • Corresponding author: Lesha Zhang
引用本文:

李飞, 秦强强, 谷战峰, 张天祥, 申思, 周丽, 张乐莎. 基于生物信息学的结直肠癌枢纽基因与预后相关基因筛选[J]. 中华结直肠疾病电子杂志, 2021, 10(05): 497-504.

Fei Li, Qiangqiang Qin, Zhanfeng Gu, Tianxiang Zhang, Si Shen, Li Zhou, Lesha Zhang. Screening of hub genes and prognosis-related genes in colorectal cancer based on bioinformatics[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2021, 10(05): 497-504.

目的

筛选结直肠癌与正常大肠组织差异表达基因并分析其与预后的关系。

方法

通过基因表达综合数据库(GEO)下载结直肠癌基因芯片GSE110224、GSE41328、GSE22598。利用R软件4.0.3筛选结直肠癌组织与正常组织差异表达基因,对这些基因进行GO和KEGG分析;使用STRING数据库构建PPI网络并将结果导入Cytoscape v3.7.2筛选出枢纽基因,最后通过GEPIA数据库验证其差异表达情况及与患者预后关系。

结果

筛选出366个差异表达基因,其中128个上调,238个下调。GO分析结果表明差异表达基因主要涉及蛋白水解、细胞增殖的正性调节等生物学过程;富集于细胞外间隙、胞外区等细胞成分;介导锌离子结合、钙离子结合等分子功能。KEGG分析显示差异表达基因主要富集于细胞因子受体相互作用、趋化因子信号通路等相关信号通路。从PPI网络中筛选出10个枢纽基因分别为CXCL8、CXCL1、SPP1、CXCL12、COL1A1、SOX9、MMP3、COL1A2、CD44、CXCL5。使用GEPIA网站验证发现差异趋势均一致,其中8个有显著性差异。预后分析显示CXCL8、SPP1和COL1A2与结直肠癌患者生存率有关。

结论

CXCL8和SPP1为结直肠癌患者预后关键基因,可考虑作为潜在生物标志物为结直肠癌筛查和诊治提供分子学依据。

Objective

To screen differentially expressed genes (DEGs) between colorectal cancer and normal colorectal mucosa tissues by bioinformatics and analyze their relationship with prognosis.

Methods

Colorectal cancer gene microarrays datasets GSE110224, GSE41328 and GSE22598 were downloaded from Gene Expression Omnibus (GEO) database. DEGs between colorectal cancer samples and normal tissue samples from those three datasets were screened by R software 4.0.3, and then GO and KEGG pathway analysis were carried out. The protein interaction network was constructed by STRING database, Cytoscape software v3.7.2 was used to screen the hub genes in the protein-protein interaction (PPI) network. Finally, the selected hub genes were validated and analyzed for the relationship with prognosis by the GEPIA database.

Results

A total of 366 DEGs were screened, of which 128 were up-regulated and 238 were down-regulated. GO function enrichment showed hub genes were mainly involved in proteolysis, positive regulation of proliferation and other biological processes, and cellular component mainly enriched in extracellular space, extracellular region, mediating zinc ion binding, calcium ion binding and other molecular functions. KEGG analysis showed that the enriched pathways are mainly related to cytokine-cytokine receptor interaction, chemokine signaling pathway and other signal transduction pathway. Ten hub genes were selected from the PPI network, including nine up-regulated genes, which were CXCL8, CXCL1, SPP1, COL1A1, SOX9, MMP3, COL1A2, CD44, CXCL5, and one down-regulated gene CXCL12. Those ten genes were verified by using GEPIA showing that eight of them existed significant difference and all of them were consistent with the above analysis. Survival analysis results showed that genes CXCL8, SPP1 and COL1A2 were significantly associated with the survival rate of colorectal tumor patients.

Conclusion

CXCL8 and SPP1 may be prognosis key genes of colorectal tumor patients and may serve as a potential biomarker providing basis on molecular level for screening and diagnosis of colorectal tumor.

图1 数据集均一化处理。1A:GSE41328数据集均一化前;1B:GSE22598数据集均一化前;1C:GSE110224均一化前;1D:GSE41328数据集均一化后;1E:GSE22598数据集均一化后;1F:GSE100224数据集均一化后
图2 差异表达基因火山图
图3 差异表达基因的GO分析与KEGG分析信号。3A:通路1:生物学过程;3B:通路2:细胞组分;3C:通路3:分子功能;3D:KEGG信号通路富集图
表1 10个枢纽基因
图4 枢纽基因在正常组织与肿瘤组织中的表达情况。T:Tumor,以红色表示;N:Normal,以灰色表示。COAD:Colon adenocarcinoma,结肠癌;READ:Rectum adenocarcinoma,直肠癌
图5 预后相关基因与患者生存率的关系
[1]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021,71(3):209-249.
[2]
Xu C, Sun L, Jiang C, et al. SPP1, analyzed by bioinformatics methods, promotes the metastasis in colorectal cancer by activating EMT pathway[J]. Biomed Pharmacother, 2017, 91: 1167-1177.
[3]
Lv J, Li L. Hub genes and key pathway identification in colorectal cancer based on bioinformatic analysis[J]. Biomed Res Int, 2019, 2019: 1545680.
[4]
范运达. 基于液相色谱-质谱联用技术的早期结直肠癌血清代谢组学研究[D]. 长春: 吉林大学, 2020.
[5]
刘士博. 基于结直肠癌患者生存期预测的关键生物标志物挖掘[D]. 石家庄: 石家庄铁道大学, 2019.
[6]
Wu Z, Liu Z, Ge W, et al. Analysis of potential genes and pathways associated with the colorectal normal mucosa-adenoma-carcinoma sequence[J]. Cancer Med, 2018, 7(6): 2555-2566.
[7]
黄政凯, 林志健, 王雨, 等. 基于生物信息技术评估大黄素防治乳腺癌的安全风险[J]. 中药药理与临床, 2020, 36(5): 126-130.
[8]
闫小妮, 田国祥, 潘振宇, 等. 如何挖掘GEPIA数据库中研究数据并生成分析结果表达图[J].中国循证心血管医学杂志, 2019, 11(5): 521-525.
[9]
Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102.
[10]
刘欣然,康悦,于守江, 等. 基于生物信息学筛选炎症相关结直肠癌基因及其特征分析[J/CD].中华结直肠疾病电子杂志, 2020, 9(3): 245-253.
[11]
梅雯,孙美涛,王唯斯, 等. 利用Oncomine和TCGA数据集分析MTERF3在大肠腺癌的表达及预后作用[J].齐齐哈尔医学院学报, 2018, 39(8): 869-873.
[12]
Liu Q, Li A, Tian Y, et al. The CXCL8-CXCR1/2 pathways in cancer[J]. Cytokine Growth Factor Rev, 2016, 31: 61-71.
[13]
Zhou XG, Huang XL, Liang SY, et al. Identifying miRNA and gene modules of colon cancer associated with pathological stage by weighted gene co-expression network analysis[J]. Onco Targets Ther, 2018, 11: 2815-2830.
[14]
Ma L, Dong L, Chang P. CD44v6 engages in colorectal cancer progression[J]. Cell Death Dis, 2019, 10(1): 30.
[15]
Xu Y, Zhang X, Hu X, et al. The effects of lncRNA MALAT1 on proliferation, invasion and migration in colorectal cancer through regulating SOX9[J]. Mol Med, 2018, 24(1): 52.
[16]
Katholnig K, Schütz B, Fritsch SD, et al. Inactivation of mTORC2 in macrophages is a signature of colorectal cancer that promotes tumorigenesis[J]. JCI Insight, 2019, 4(20): e124164.
[17]
Chen L, Lu D, Sun K, et al. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis[J]. Gene, 2019, 692: 119-125.
[18]
Gong B, Kao Y, Zhang C, et al. Identification of Hub Genes Related to Carcinogenesis and Prognosis in Colorectal Cancer Based on Integrated Bioinformatics[J]. Mediators Inflamm, 2020, 2020:5934821.
[19]
Lund-Andersen C, Torgunrud A, Fleten KG, et al. Omics analyses in peritoneal metastasis-utility in the management of peritoneal metastases from colorectal cancer and pseudomyxoma peritonei: a narrative review[J]. J Gastrointest Oncol, 2021, 12 (Suppl 1) : S191-S203.
[20]
Giulietti M, Occhipinti G, Righetti A, et al. Emerging biomarkers in bladder cancer identified by network analysis of transcriptomic data[J]. Front Oncol, 2018, 8: 450.
[21]
Lin VTG, Yang ES. The Pros and Cons of Incorporating Transcriptomics in the Age of Precision Oncology[J]. J Natl Cancer Inst, 2019, 111(10):1016-1022.
[22]
He J, Wu F, Han Z, et al. Biomarkers (mRNAs and Non-Coding RNAs) for the diagnosis and prognosis of colorectal cancer-from the body fluid to tissue level[J]. Front Oncol, 2021, 11: 632834.
[1] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[2] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[3] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[4] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[5] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[6] 潘冰, 吕少诚, 赵昕, 李立新, 郎韧, 贺强. 淋巴结清扫数目对远端胆管癌胰十二指肠切除手术疗效的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 608-612.
[7] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[8] 张文华, 陶焠, 胡添松. 不同部位外生型肝癌临床病理特点及其对术后肝内复发和预后影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 651-655.
[9] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[10] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[11] 叶文涛, 吴忠均, 廖锐. 癌旁组织ALOX15表达与肝癌根治性切除术后预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 708-712.
[12] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[13] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[14] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
[15] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
阅读次数
全文


摘要