[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021,71(3):209-249.
|
[2] |
Xu C, Sun L, Jiang C, et al. SPP1, analyzed by bioinformatics methods, promotes the metastasis in colorectal cancer by activating EMT pathway[J]. Biomed Pharmacother, 2017, 91: 1167-1177.
|
[3] |
Lv J, Li L. Hub genes and key pathway identification in colorectal cancer based on bioinformatic analysis[J]. Biomed Res Int, 2019, 2019: 1545680.
|
[4] |
范运达. 基于液相色谱-质谱联用技术的早期结直肠癌血清代谢组学研究[D]. 长春: 吉林大学, 2020.
|
[5] |
刘士博. 基于结直肠癌患者生存期预测的关键生物标志物挖掘[D]. 石家庄: 石家庄铁道大学, 2019.
|
[6] |
Wu Z, Liu Z, Ge W, et al. Analysis of potential genes and pathways associated with the colorectal normal mucosa-adenoma-carcinoma sequence[J]. Cancer Med, 2018, 7(6): 2555-2566.
|
[7] |
黄政凯, 林志健, 王雨, 等. 基于生物信息技术评估大黄素防治乳腺癌的安全风险[J]. 中药药理与临床, 2020, 36(5): 126-130.
|
[8] |
闫小妮, 田国祥, 潘振宇, 等. 如何挖掘GEPIA数据库中研究数据并生成分析结果表达图[J].中国循证心血管医学杂志, 2019, 11(5): 521-525.
|
[9] |
Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102.
|
[10] |
刘欣然,康悦,于守江, 等. 基于生物信息学筛选炎症相关结直肠癌基因及其特征分析[J/CD].中华结直肠疾病电子杂志, 2020, 9(3): 245-253.
|
[11] |
梅雯,孙美涛,王唯斯, 等. 利用Oncomine和TCGA数据集分析MTERF3在大肠腺癌的表达及预后作用[J].齐齐哈尔医学院学报, 2018, 39(8): 869-873.
|
[12] |
Liu Q, Li A, Tian Y, et al. The CXCL8-CXCR1/2 pathways in cancer[J]. Cytokine Growth Factor Rev, 2016, 31: 61-71.
|
[13] |
Zhou XG, Huang XL, Liang SY, et al. Identifying miRNA and gene modules of colon cancer associated with pathological stage by weighted gene co-expression network analysis[J]. Onco Targets Ther, 2018, 11: 2815-2830.
|
[14] |
Ma L, Dong L, Chang P. CD44v6 engages in colorectal cancer progression[J]. Cell Death Dis, 2019, 10(1): 30.
|
[15] |
Xu Y, Zhang X, Hu X, et al. The effects of lncRNA MALAT1 on proliferation, invasion and migration in colorectal cancer through regulating SOX9[J]. Mol Med, 2018, 24(1): 52.
|
[16] |
Katholnig K, Schütz B, Fritsch SD, et al. Inactivation of mTORC2 in macrophages is a signature of colorectal cancer that promotes tumorigenesis[J]. JCI Insight, 2019, 4(20): e124164.
|
[17] |
Chen L, Lu D, Sun K, et al. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis[J]. Gene, 2019, 692: 119-125.
|
[18] |
Gong B, Kao Y, Zhang C, et al. Identification of Hub Genes Related to Carcinogenesis and Prognosis in Colorectal Cancer Based on Integrated Bioinformatics[J]. Mediators Inflamm, 2020, 2020:5934821.
|
[19] |
Lund-Andersen C, Torgunrud A, Fleten KG, et al. Omics analyses in peritoneal metastasis-utility in the management of peritoneal metastases from colorectal cancer and pseudomyxoma peritonei: a narrative review[J]. J Gastrointest Oncol, 2021, 12 (Suppl 1) : S191-S203.
|
[20] |
Giulietti M, Occhipinti G, Righetti A, et al. Emerging biomarkers in bladder cancer identified by network analysis of transcriptomic data[J]. Front Oncol, 2018, 8: 450.
|
[21] |
Lin VTG, Yang ES. The Pros and Cons of Incorporating Transcriptomics in the Age of Precision Oncology[J]. J Natl Cancer Inst, 2019, 111(10):1016-1022.
|
[22] |
He J, Wu F, Han Z, et al. Biomarkers (mRNAs and Non-Coding RNAs) for the diagnosis and prognosis of colorectal cancer-from the body fluid to tissue level[J]. Front Oncol, 2021, 11: 632834.
|