切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2021, Vol. 10 ›› Issue (01) : 16 -25. doi: 10.3877/cma.j.issn.2095-3224.2021.01.003

所属专题: 机器人手术 文献 指南共识

指南与共识

机器人结直肠癌手术中国专家共识(2020版)
中国医师协会结直肠肿瘤专业委员会机器人手术专业委员会, 中国研究型医院学会机器人与腹腔镜外科专业委员会   
  • 收稿日期:2020-12-13 出版日期:2021-02-25

Chinese expert consensus on robotic surgery for colorectal cancer (2020 edition)

Professional Committee of Robotic Surgery, Colorectal Cancer Committee of Chinese Medical Doctor Association, Robotic and Laparoscopic Surgery Committee of Chinese Research Hospital Association   

  • Received:2020-12-13 Published:2021-02-25
引用本文:

中国医师协会结直肠肿瘤专业委员会机器人手术专业委员会, 中国研究型医院学会机器人与腹腔镜外科专业委员会. 机器人结直肠癌手术中国专家共识(2020版)[J]. 中华结直肠疾病电子杂志, 2021, 10(01): 16-25.

Professional Committee of Robotic Surgery, Colorectal Cancer Committee of Chinese Medical Doctor Association, Robotic and Laparoscopic Surgery Committee of Chinese Research Hospital Association. Chinese expert consensus on robotic surgery for colorectal cancer (2020 edition)[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2021, 10(01): 16-25.

机器人微创手术是当代外科技术发展的重要趋势。我国《机器人结直肠癌手术专家共识(2015版)》的发布对机器人结直肠癌手术的规范化开展与推广应用起到了重要作用。随着理念更新与技术进步,机器人结直肠癌手术又得到了进一步的发展。基于此,在2015版专家共识的基础上,修订并发布了《机器人结直肠癌手术中国专家共识(2020版)》,对理论技术体系进行了补充、更新和完善,以期更好地指导临床实践。

Robotic minimally invasive surgery is an important trend in the modern surgical techniques. The publish of Chinese Expert Consensus on Robotic Surgery for Colorectal Cancer (2015 Edition) has played an important role in the standardization, promotion and application of robotic colorectal cancer surgery. With the concept update and technological progress, robotic colorectal cancer surgery has been further developed. Based on this, on the basis of 2015 expert consensus, the Chinese Expert Consensus on Robotic Surgery for Colorectal Cancer (2020 Edition) is revised and published to supplement, update and improve the theoretical and technical system, so as to better guide clinical practice.

图1 达芬奇Si系统及更早版本机器人直肠和乙状结肠癌根治术Trocar及机械臂布置
图2 达芬奇Si系统及更早版本游离结肠脾曲时机械臂布置
图3 达芬奇Xi系统用于直肠和乙状结肠癌根治术Trocar及机械臂布置
图4 达芬奇Xi系统肿瘤位置与操作孔连线的关系。4A:对于低位直肠癌等盆底操作为主的手术,操作孔连线可较为“水平”;4B:对于高位乙状结肠癌等需要游离脾曲的手术,操作孔连线可较为“垂直”
图5 达芬奇Si系统及更早版本机器人左半结肠癌根治术Trocar及机械臂布置
图6 达芬奇Si系统及更早版本机器人右半结肠癌根治术Trocar及机械臂布置
图7 达芬奇Xi系统用于右半结肠癌根治术Trocar及机械臂布置。7A:Trocar布置方法之一,操作孔基本沿一直线排列,由耻骨联合上方至左肋弓下缘与左锁骨中线交点处;7B:布置方法之二,操作孔置于耻骨联合上方,略呈一弧线
1
FooCC, LawWL. The learning curve of robotic-assisted low rectal resection of a novice rectal surgeon[J]. World J Surg, 2016, 40(2): 456-462.
2
Jiménez-RodríguezRM, Rubio-Dorado-ManzanaresM, Díaz-PavónJM, et al. Learning curve in robotic rectal cancer surgery: current state of affairs[J]. Int J Colorectal Dis, 2016, 31(12): 1807-1815.
3
YamaguchiT, KinugasaY, ShiomiA, et al. Learning curve for robotic-assisted surgery for rectal cancer: use of the cumulative sum method[J]. Surg Endosc, 2015, 29(7): 1679-1685.
4
ParkEJ, KimCW, ChoMS, et al. Multidimensional analyses of the learning curve of robotic low anterior resection for rectal cancer: 3-phase learning process comparison[J]. Surg Endosc, 2014, 28(10): 2821-2831.

URL    
5
SngKK, HaraM, ShinJW, et al. The multiphasic learning curve for robot-assisted rectal surgery[J]. Surg Endosc, 2013, 27(9): 3297-3307.
6
HuangYM, HuangYJ, WeiPL. Outcomes of robotic versus laparoscopic surgery for mid and low rectal cancer after neoadjuvant chemoradiation therapy and the effect of learning curve[J]. Medicine (Baltimore), 2017, 96(40): e8171.
7
MelichG, HongYK, KimJ, et al. Simultaneous development of laparoscopy and robotics provides acceptable perioperative outcomes and shows robotics to have a faster learning curve and to be overall faster in rectal cancer surgery: analysis of novice MIS surgeon learning curves[J]. Surg Endosc, 2015, 29(3): 558-568.
8
OdermattM, AhmedJ, PanteleimonitisS, et al. Prior experience in laparoscopic rectal surgery can minimise the learning curve for robotic rectal resections: a cumulative sum analysis[J]. Surg Endosc, 2017, 31(10): 4067-4076.
9
Rodrigues ArmijoP, HuangCK, CarlsonT, et al. Ergonomics Analysis for Subjective and Objective Fatigue Between Laparoscopic and Robotic Surgical Skills Practice Among Surgeons[J]. Surg Innov, 2020, 27(1): 81-87.
10
ArmijoPR, HuangCK, HighR, et al. Ergonomics of minimally invasive surgery: an analysis of muscle effort and fatigue in the operating room between laparoscopic and robotic surgery[J]. Surg Endosc, 2019, 33(7): 2323-2331.
11
González-SánchezM, González-PovedaI, Mera-VelascoS, et al. Comparison of fatigue accumulated during and after prolonged robotic and laparoscopic surgical methods: a cross-sectional study[J]. Surg Endosc, 2017, 31(3): 1119-1135.
12
ButlerKA, KapetanakisVE, SmithBE, et al. Surgeon fatigue and postural stability: is robotic better than laparoscopic surgery?[J]. J Laparoendosc Adv Surg Tech A, 2013, 23(4): 343-346.
13
HubertN, GillesM, DesbrossesK, et al. Ergonomic assessment of the surgeon's physical workload during standard and robotic assisted laparoscopic procedures[J]. Int J Med Robot, 2013, 9(2): 142-147.

URL    
14
CollinsSA, O'SullivanDM, TulikangasPK. Surgeon activity in robotic versus abdominal gynecologic surgery[J]. J Robot Surg, 2012, 6(4): 333-336.

URL    
15
ChangW, WeiY, RenL, et al. Short-term and long-term outcomes of robotic rectal surgery-from the real word data of 1145 consecutive cases in China[J]. Surg Endosc, 2020, 34(9): 4079-4088.
16
JayneD, PigazziA, MarshallH, et al. Effect of Robotic-Assisted vs Conventional Laparoscopic Surgery on Risk of Conversion to Open Laparotomy Among Patients Undergoing Resection for Rectal Cancer: The ROLARR Randomized Clinical Trial[J]. Jama, 2017, 318(16): 1569-1580.
17
LiL, ZhangW, GuoY, et al. Robotic Versus Laparoscopic Rectal Surgery for Rectal Cancer: A Meta-Analysis of 7 Randomized Controlled Trials[J]. Surg Innov, 2019, 26(4): 497-504.
18
OhtaniH, MaedaK, NomuraS, et al. Meta-analysis of Robot-assisted Versus Laparoscopic Surgery for Rectal Cancer[J]. In Vivo, 2018, 32(3): 611-623.
19
PreteFP, PezzollaA, PreteF, et al. Robotic Versus Laparoscopic Minimally Invasive Surgery for Rectal Cancer: A Systematic Review and Meta-analysis of Randomized Controlled Trials[J]. Ann Surg, 2018, 267(6): 1034-1046.
20
LiaoG, LiYB, ZhaoZ, et al. Robotic-assisted surgery versus open surgery in the treatment of rectal cancer: the current evidence[J]. Sci Rep, 2016, 6: 26981.
21
KimCW, KimCH, BaikSH. Outcomes of robotic-assisted colorectal surgery compared with laparoscopic and open surgery: a systematic review[J]. J Gastrointest Surg, 2014, 18(4): 816-830.

URL    
22
TangX, WangZ, WuX, et al. Robotic versus laparoscopic surgery for rectal cancer in male urogenital function preservation, a meta-analysis[J]. World J Surg Oncol, 2018, 16(1): 196.
23
BroholmM, PommergaardHC, GögenürI. Possible benefits of robot-assisted rectal cancer surgery regarding urological and sexual dysfunction: a systematic review and meta-analysis[J]. Colorectal Dis, 2015, 17(5): 375-381.
24
MiloneM, ManigrassoM, VelottiN, et al. Completeness of total mesorectum excision of laparoscopic versus robotic surgery: a review with a meta-analysis[J]. Int J Colorectal Dis, 2019, 34(6): 983-991.
25
XiongB, MaL, HuangW, et al. Robotic versus laparoscopic total mesorectal excision for rectal cancer: a meta-analysis of eight studies[J]. J Gastrointest Surg, 2015, 19(3): 516-526.
26
LiaoG, ZhaoZ, DengH, et al. Comparison of pathological outcomes between robotic rectal cancer surgery and laparoscopic rectal cancer surgery: A meta-analysis based on seven randomized controlled trials[J]. Int J Med Robot, 2019, 15(5): e2027.
27
SimillisC, LalN, ThoukididouSN, et al. Open Versus Laparoscopic Versus Robotic Versus Transanal Mesorectal Excision for Rectal Cancer: A Systematic Review and Network Meta-analysis[J]. Ann Surg, 2019, 270(1): 59-68.
28
WeeIJY, KuoLJ, NguJC. The impact of robotic colorectal surgery in obese patients: a systematic review, meta-analysis, and meta-regression[J]. Surg Endosc, 2019, 33(11): 3558-3566.
29
MaS, ChenY, ChenY, et al. Short-term outcomes of robotic-assisted right colectomy compared with laparoscopic surgery: A systematic review and meta-analysis[J]. Asian J Surg, 2019, 42(5): 589-598.
30
RausaE, KellyME, AstiE, et al. Right hemicolectomy: a network meta-analysis comparing open, laparoscopic-assisted, total laparoscopic, and robotic approach[J]. Surg Endosc, 2019, 33(4): 1020-1032.
31
SolainiL, BazzocchiF, CavaliereD, et al. Robotic versus laparoscopic right colectomy: an updated systematic review and meta-analysis[J]. Surg Endosc, 2018, 32(3): 1104-1110.
32
RondelliF, BalzarottiR, VillaF, et al. Is robot-assisted laparoscopic right colectomy more effective than the conventional laparoscopic procedure? A meta-analysis of short-term outcomes[J]. Int J Surg, 2015, 18: 75-82.
33
ParkJS, KangH, ParkSY, et al. Long-term oncologic after robotic versus laparoscopic right colectomy: a prospective randomized study[J]. Surg Endosc, 2019, 33(9): 2975-2981.
34
SpinoglioG, BianchiPP, MaranoA, et al. Robotic Versus Laparoscopic Right Colectomy with Complete Mesocolic Excision for the Treatment of Colon Cancer: Perioperative Outcomes and 5-Year Survival in a Consecutive Series of 202 Patients[J]. Ann Surg Oncol, 2018, 25(12): 3580-3586.
35
KimJC, LeeJL, YoonYS, et al. Robotic left colectomy with complete mesocolectomy for splenic flexure and descending colon cancer, compared with a laparoscopic procedure[J]. Int J Med Robot, 2018, 14(5): e1918.
36
BaeSU, JeongWK, BaekSK. Robot-Assisted Colectomy for Left-Sided Colon Cancer: Comparison of Reduced-Port and Conventional Multi-Port Robotic Surgery[J]. J Laparoendosc Adv Surg Tech A, 2017, 27(4): 398-403.
37
ZhouS, WangX, ZhaoC, et al. Comparison of short-term and survival outcomes for transanal natural orifice specimen extraction with conventional mini-laparotomy after laparoscopic anterior resection for colorectal cancer[J]. Cancer Manag Res, 2019, 11: 5939-5948.
38
GuanX, LiuZ, LongoA, et al. International consensus on natural orifice specimen extraction surgery (NOSES) for colorectal cancer[J]. Gastroenterol Rep (Oxf), 2019, 7(1): 24-31.
39
中国NOSES联盟中国医师协会结直肠肿瘤专业委员会NOSES专委会. 结直肠肿瘤经自然腔道取标本手术专家共识(2019版) [J/CD]. 中华结直肠疾病电子杂志, 2019, 8(4): 336-342.
40
GuanX, LuZ, WangS, et al. Comparative short- and long-term outcomes of three techniques of natural orifice specimen extraction surgery for rectal cancer[J]. Eur J Surg Oncol 2020, 2020, 46(10): e55-e61.
41
GaoG, ChenL, LuoR, et al. Short- and long-term outcomes for transvaginal specimen extraction versus minilaparotomy after robotic anterior resection for colorectal cancer: a mono-institution retrospective study[J]. World J Surg Oncol, 2020, 18(1): 190.
42
EfetovSK, TulinaIA, KimVD, et al. Natural orifice specimen extraction (NOSE) surgery with rectal eversion and total extra-abdominal resection[J]. Tech Coloproctol, 2019, 23(9): 899-902.
43
牛正川, 韦烨, 朱德祥, 等. 机器人腹部无切口直肠癌前切除术[J/CD]. 中华结直肠疾病电子杂志, 2018, 7(4): 332-336.
44
ChoiGS, ParkIJ, KangBM, et al. A novel approach of robotic-assisted anterior resection with transanal or transvaginal retrieval of the specimen for colorectal cancer[J]. Surg Endosc, 2009, 23(12): 2831-2835.

URL    
45
GachabayovM, TulinaI, BergamaschiR, et al. Does transanal total mesorectal excision of rectal cancer improve histopathology metrics and/or complication rates? A meta-analysis[J]. Surg Oncol, 2019, 30: 47-51.
46
AdaminaM, BuchsNC, PennaM, et al. St.Gallen consensus on safe implementation of transanal total mesorectal excision[J]. Surg Endosc, 2018, 32(3): 1091-1103.
47
FrancisN, PennaM, MackenzieH, et al. Consensus on structured training curriculum for transanal total mesorectal excision (TaTME) [J]. Surg Endosc, 2017, 31(7): 2711-2719.
48
MaB, GaoP, SongY, et al. Transanal total mesorectal excision (taTME) for rectal cancer: a systematic review and meta-analysis of oncological and perioperative outcomes compared with laparoscopic total mesorectal excision[J]. BMC Cancer, 2016, 16: 380.
49
DeijenCL, VelthuisS, TsaiA, et al. COLOR III: a multicentre randomised clinical trial comparing transanal TME versus laparoscopic TME for mid and low rectal cancer[J]. Surg Endosc, 2016, 30(8): 3210-3215.
50
YeJ, ShenH, LiF, et al. Robotic-assisted transanal total mesorectal excision for rectal cancer: technique and results from a single institution[J]. Tech Coloproctol, 2020.
51
KuoLJ, NguJC, TongYS, et al. Combined robotic transanal total mesorectal excision (R-taTME) and single-site plus one-port (R-SSPO) technique for ultra-low rectal surgery-initial experience with a new operation approach[J]. Int J Colorectal Dis, 2017, 32(2): 249-254.
52
AtallahS, Martin-PerezB, PinanJ, et al. Robotic transanal total mesorectal excision: a pilot study[J]. Tech Coloproctol, 2014, 18(11): 1047-1053.

URL    
53
KneistW, SteinH, RheinwaldM. Da Vinci Single-Port robot-assisted transanal mesorectal excision: a promising preclinical experience[J]. Surg Endosc, 2020, 34(7): 3232-3235.
54
CarmichaelH, D'AndreaAP, SkanckeM, et al. Feasibility of transanal total mesorectal excision (taTME) using the Medrobotics Flex® System[J]. Surg Endosc, 2020, 34(1): 485-491.
55
van den BosJ, JongenA, MelenhorstJ, et al. Near-infrared fluorescence image-guidance in anastomotic colorectal cancer surgery and its relation to serum markers of anastomotic leakage: a clinical pilot study[J]. Surg Endosc, 2019, 33(11): 3766-3774.
56
Blanco-ColinoR, Espin-BasanyE. Intraoperative use of ICG fluorescence imaging to reduce the risk of anastomotic leakage in colorectal surgery: a systematic review and meta-analysis[J]. Tech Coloproctol, 2018, 22(1): 15-23.
57
NishigoriN, KoyamaF, NakagawaT, et al. Visualization of Lymph/Blood Flow in Laparoscopic Colorectal Cancer Surgery by ICG Fluorescence Imaging (Lap-IGFI) [J]. Ann Surg Oncol, 2016, 23 (Suppl 2): S266-274.
58
BoniL, DavidG, ManganoA, et al. Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery[J]. Surg Endosc, 2015, 29(7): 2046-2055.
59
KazanowskiM, Al FurajiiH, CahillRA. Near-infrared laparoscopic fluorescence for pelvic side wall delta mapping in patients with rectal cancer--'PINPOINT' nodal assessment[J]. Colorectal Dis, 2015, 17 (Suppl 3): 32-35.
60
AnkersmitM, BonjerHJ, HanninkG, et al. Near-infrared fluorescence imaging for sentinel lymph node identification in colon cancer: a prospective single-center study and systematic review with meta-analysis[J]. Tech Coloproctol, 2019, 23(12): 1113-1126.
61
YeungTM, VolpiD, TullisID, et al. Identifying Ureters In Situ Under Fluorescence During Laparoscopic and Open Colorectal Surgery[J]. Ann Surg, 2016, 263(1): e1-2.
62
ParkH, FarnamRW. Novel Use of Indocyanine Green for Intraoperative, Real-time Localization of Ureter During Robot-Assisted Excision of Endometriosis[J]. J Minim Invasive Gynecol, 2015, 22(6s): S69.
63
SiddighiS, YuneJJ, HardestyJ. Indocyanine green for intraoperative localization of ureter[J]. Am J Obstet Gynecol, 2014, 211(4): 436.e1-2.
64
LietoE, AuricchioA, CardellaF, et al. Fluorescence-Guided Surgery in the Combined Treatment of Peritoneal Carcinomatosis from Colorectal Cancer: Preliminary Results and Considerations[J]. World J Surg, 2018, 42(4): 1154-1160.
65
HarlaarNJ, KollerM, de JonghSJ, et al. Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study[J]. Lancet Gastroenterol Hepatol, 2016, 1(4): 283-290.
66
DapriG, CahillR, BourgeoisP, et al. Peritumoural injection of indocyanine green fluorescence during transanal total mesorectal excision to identify the plane of dissection-a video vignette[J]. Colorectal Dis, 2017, 19(6): 599-600.
67
XuJ, TangB, LiT, et al. Robotic colorectal cancer surgery in China: a nationwide retrospective observational study[J]. Surg Endosc, 2020.
68
ClavienPA, BarkunJ, de OliveiraML, et al. The Clavien-Dindo classification of surgical complications: five-year experience[J]. Ann Surg, 2009, 250(2): 187-196.
69
柳欣欣, 刘江, 江志伟, 等. 微创及加速康复外科在结直肠手术中的应用[J]. 机器人外科学杂志, 2020, 1(1): 18-25.
70
QuiramBJ, CrippaJ, GrassF, et al. Impact of enhanced recovery on oncological outcomes following minimally invasive surgery for rectal cancer[J]. Br J Surg, 2019, 106(7): 922-929.
71
MartinAN, BerryPS, FrielCM, et al. Impact of minimally invasive surgery on short-term outcomes after rectal resection for neoplasm within the setting of an enhanced recovery program[J]. Surg Endosc, 2018, 32(5): 2517-2524.
72
KhreissW, HuebnerM, CimaRR, et al. Improving conventional recovery with enhanced recovery in minimally invasive surgery for rectal cancer[J]. Dis Colon Rectum, 2014, 57(5): 557-563.

URL    
73
AsklidD, GerjyR, HjernF, et al. Robotic vs laparoscopic rectal tumour surgery: a cohort study[J]. Colorectal Dis, 2019, 21(2): 191-199.
74
中国医师协会内镜医师分会腹腔镜外科专业委员会, 中国医师协会结直肠肿瘤专业委员会腹腔镜专业委员会, 中华医学会外科学分会结直肠外科学组. 中国直肠癌侧方淋巴结转移诊疗专家共识(2019版) [J]. 中华胃肠外科杂志, 2019, 22(10): 901-912.
75
ChangW, LiuT, RenL, et al. A trinity technique for prevention of low rectal anastomotic leakage in the robotic era[J]. Eur J Surg Oncol, 2020.
76
XuJM, WeiY, WangXY, et al. Robot-assisted one-stage resection of rectal cancer with liver and lung metastases[J]. World J Gastroenterol, 2015, 21(9): 2848-2853.
77
NavarroJ, RhoSY, KangI, et al. Robotic simultaneous resection for colorectal liver metastasis: feasibility for all types of liver resection[J]. Langenbecks Arch Surg, 2019, 404(7): 895-908.
78
DwyerRH, ScheidtMJ, MarshallJS, et al. Safety and efficacy of synchronous robotic surgery for colorectal cancer with liver metastases[J]. J Robot Surg, 2018, 12(4): 603-606.
79
LinQ, YeQ, ZhuD, et al. Comparison of minimally invasive and open colorectal resections for patients undergoing simultaneous R0 resection for liver metastases: a propensity score analysis[J]. Int J Colorectal Dis, 2015, 30(3): 385-395.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[3] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[4] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[5] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[6] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[7] 罗佳, 赵晶晶, 曹小珍, 钟玲, 范林军, 曾令娟. 单侧腋窝双侧乳晕入路机器人甲状腺术后局部加压预防皮下隧道出血的对照研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 603-606.
[8] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[9] 常剑, 邱峰, 毛郁琪. 摄食抑制因子-1与腹腔镜结直肠癌根治术后肝转移的关系分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 502-505.
[10] 王晓燕, 肖佑, 肖戈, 王真权. 老年结直肠癌肺转移CT特征及高危因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 506-509.
[11] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[12] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[13] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[14] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[15] 静脉淋巴功能不全临床专家共识编写组. 静脉淋巴功能不全临床专家共识[J]. 中华临床医师杂志(电子版), 2023, 17(06): 630-638.
阅读次数
全文


摘要