1 |
FooCC, LawWL. The learning curve of robotic-assisted low rectal resection of a novice rectal surgeon[J]. World J Surg, 2016, 40(2): 456-462.
|
2 |
Jiménez-RodríguezRM, Rubio-Dorado-ManzanaresM, Díaz-PavónJM, et al. Learning curve in robotic rectal cancer surgery: current state of affairs[J]. Int J Colorectal Dis, 2016, 31(12): 1807-1815.
|
3 |
YamaguchiT, KinugasaY, ShiomiA, et al. Learning curve for robotic-assisted surgery for rectal cancer: use of the cumulative sum method[J]. Surg Endosc, 2015, 29(7): 1679-1685.
|
4 |
ParkEJ, KimCW, ChoMS, et al. Multidimensional analyses of the learning curve of robotic low anterior resection for rectal cancer: 3-phase learning process comparison[J]. Surg Endosc, 2014, 28(10): 2821-2831.
URL
|
5 |
SngKK, HaraM, ShinJW, et al. The multiphasic learning curve for robot-assisted rectal surgery[J]. Surg Endosc, 2013, 27(9): 3297-3307.
|
6 |
HuangYM, HuangYJ, WeiPL. Outcomes of robotic versus laparoscopic surgery for mid and low rectal cancer after neoadjuvant chemoradiation therapy and the effect of learning curve[J]. Medicine (Baltimore), 2017, 96(40): e8171.
|
7 |
MelichG, HongYK, KimJ, et al. Simultaneous development of laparoscopy and robotics provides acceptable perioperative outcomes and shows robotics to have a faster learning curve and to be overall faster in rectal cancer surgery: analysis of novice MIS surgeon learning curves[J]. Surg Endosc, 2015, 29(3): 558-568.
|
8 |
OdermattM, AhmedJ, PanteleimonitisS, et al. Prior experience in laparoscopic rectal surgery can minimise the learning curve for robotic rectal resections: a cumulative sum analysis[J]. Surg Endosc, 2017, 31(10): 4067-4076.
|
9 |
Rodrigues ArmijoP, HuangCK, CarlsonT, et al. Ergonomics Analysis for Subjective and Objective Fatigue Between Laparoscopic and Robotic Surgical Skills Practice Among Surgeons[J]. Surg Innov, 2020, 27(1): 81-87.
|
10 |
ArmijoPR, HuangCK, HighR, et al. Ergonomics of minimally invasive surgery: an analysis of muscle effort and fatigue in the operating room between laparoscopic and robotic surgery[J]. Surg Endosc, 2019, 33(7): 2323-2331.
|
11 |
González-SánchezM, González-PovedaI, Mera-VelascoS, et al. Comparison of fatigue accumulated during and after prolonged robotic and laparoscopic surgical methods: a cross-sectional study[J]. Surg Endosc, 2017, 31(3): 1119-1135.
|
12 |
ButlerKA, KapetanakisVE, SmithBE, et al. Surgeon fatigue and postural stability: is robotic better than laparoscopic surgery?[J]. J Laparoendosc Adv Surg Tech A, 2013, 23(4): 343-346.
|
13 |
HubertN, GillesM, DesbrossesK, et al. Ergonomic assessment of the surgeon's physical workload during standard and robotic assisted laparoscopic procedures[J]. Int J Med Robot, 2013, 9(2): 142-147.
URL
|
14 |
CollinsSA, O'SullivanDM, TulikangasPK. Surgeon activity in robotic versus abdominal gynecologic surgery[J]. J Robot Surg, 2012, 6(4): 333-336.
URL
|
15 |
ChangW, WeiY, RenL, et al. Short-term and long-term outcomes of robotic rectal surgery-from the real word data of 1145 consecutive cases in China[J]. Surg Endosc, 2020, 34(9): 4079-4088.
|
16 |
JayneD, PigazziA, MarshallH, et al. Effect of Robotic-Assisted vs Conventional Laparoscopic Surgery on Risk of Conversion to Open Laparotomy Among Patients Undergoing Resection for Rectal Cancer: The ROLARR Randomized Clinical Trial[J]. Jama, 2017, 318(16): 1569-1580.
|
17 |
LiL, ZhangW, GuoY, et al. Robotic Versus Laparoscopic Rectal Surgery for Rectal Cancer: A Meta-Analysis of 7 Randomized Controlled Trials[J]. Surg Innov, 2019, 26(4): 497-504.
|
18 |
OhtaniH, MaedaK, NomuraS, et al. Meta-analysis of Robot-assisted Versus Laparoscopic Surgery for Rectal Cancer[J]. In Vivo, 2018, 32(3): 611-623.
|
19 |
PreteFP, PezzollaA, PreteF, et al. Robotic Versus Laparoscopic Minimally Invasive Surgery for Rectal Cancer: A Systematic Review and Meta-analysis of Randomized Controlled Trials[J]. Ann Surg, 2018, 267(6): 1034-1046.
|
20 |
LiaoG, LiYB, ZhaoZ, et al. Robotic-assisted surgery versus open surgery in the treatment of rectal cancer: the current evidence[J]. Sci Rep, 2016, 6: 26981.
|
21 |
KimCW, KimCH, BaikSH. Outcomes of robotic-assisted colorectal surgery compared with laparoscopic and open surgery: a systematic review[J]. J Gastrointest Surg, 2014, 18(4): 816-830.
URL
|
22 |
TangX, WangZ, WuX, et al. Robotic versus laparoscopic surgery for rectal cancer in male urogenital function preservation, a meta-analysis[J]. World J Surg Oncol, 2018, 16(1): 196.
|
23 |
BroholmM, PommergaardHC, GögenürI. Possible benefits of robot-assisted rectal cancer surgery regarding urological and sexual dysfunction: a systematic review and meta-analysis[J]. Colorectal Dis, 2015, 17(5): 375-381.
|
24 |
MiloneM, ManigrassoM, VelottiN, et al. Completeness of total mesorectum excision of laparoscopic versus robotic surgery: a review with a meta-analysis[J]. Int J Colorectal Dis, 2019, 34(6): 983-991.
|
25 |
XiongB, MaL, HuangW, et al. Robotic versus laparoscopic total mesorectal excision for rectal cancer: a meta-analysis of eight studies[J]. J Gastrointest Surg, 2015, 19(3): 516-526.
|
26 |
LiaoG, ZhaoZ, DengH, et al. Comparison of pathological outcomes between robotic rectal cancer surgery and laparoscopic rectal cancer surgery: A meta-analysis based on seven randomized controlled trials[J]. Int J Med Robot, 2019, 15(5): e2027.
|
27 |
SimillisC, LalN, ThoukididouSN, et al. Open Versus Laparoscopic Versus Robotic Versus Transanal Mesorectal Excision for Rectal Cancer: A Systematic Review and Network Meta-analysis[J]. Ann Surg, 2019, 270(1): 59-68.
|
28 |
WeeIJY, KuoLJ, NguJC. The impact of robotic colorectal surgery in obese patients: a systematic review, meta-analysis, and meta-regression[J]. Surg Endosc, 2019, 33(11): 3558-3566.
|
29 |
MaS, ChenY, ChenY, et al. Short-term outcomes of robotic-assisted right colectomy compared with laparoscopic surgery: A systematic review and meta-analysis[J]. Asian J Surg, 2019, 42(5): 589-598.
|
30 |
RausaE, KellyME, AstiE, et al. Right hemicolectomy: a network meta-analysis comparing open, laparoscopic-assisted, total laparoscopic, and robotic approach[J]. Surg Endosc, 2019, 33(4): 1020-1032.
|
31 |
SolainiL, BazzocchiF, CavaliereD, et al. Robotic versus laparoscopic right colectomy: an updated systematic review and meta-analysis[J]. Surg Endosc, 2018, 32(3): 1104-1110.
|
32 |
RondelliF, BalzarottiR, VillaF, et al. Is robot-assisted laparoscopic right colectomy more effective than the conventional laparoscopic procedure? A meta-analysis of short-term outcomes[J]. Int J Surg, 2015, 18: 75-82.
|
33 |
ParkJS, KangH, ParkSY, et al. Long-term oncologic after robotic versus laparoscopic right colectomy: a prospective randomized study[J]. Surg Endosc, 2019, 33(9): 2975-2981.
|
34 |
SpinoglioG, BianchiPP, MaranoA, et al. Robotic Versus Laparoscopic Right Colectomy with Complete Mesocolic Excision for the Treatment of Colon Cancer: Perioperative Outcomes and 5-Year Survival in a Consecutive Series of 202 Patients[J]. Ann Surg Oncol, 2018, 25(12): 3580-3586.
|
35 |
KimJC, LeeJL, YoonYS, et al. Robotic left colectomy with complete mesocolectomy for splenic flexure and descending colon cancer, compared with a laparoscopic procedure[J]. Int J Med Robot, 2018, 14(5): e1918.
|
36 |
BaeSU, JeongWK, BaekSK. Robot-Assisted Colectomy for Left-Sided Colon Cancer: Comparison of Reduced-Port and Conventional Multi-Port Robotic Surgery[J]. J Laparoendosc Adv Surg Tech A, 2017, 27(4): 398-403.
|
37 |
ZhouS, WangX, ZhaoC, et al. Comparison of short-term and survival outcomes for transanal natural orifice specimen extraction with conventional mini-laparotomy after laparoscopic anterior resection for colorectal cancer[J]. Cancer Manag Res, 2019, 11: 5939-5948.
|
38 |
GuanX, LiuZ, LongoA, et al. International consensus on natural orifice specimen extraction surgery (NOSES) for colorectal cancer[J]. Gastroenterol Rep (Oxf), 2019, 7(1): 24-31.
|
39 |
中国NOSES联盟中国医师协会结直肠肿瘤专业委员会NOSES专委会. 结直肠肿瘤经自然腔道取标本手术专家共识(2019版) [J/CD]. 中华结直肠疾病电子杂志, 2019, 8(4): 336-342.
|
40 |
GuanX, LuZ, WangS, et al. Comparative short- and long-term outcomes of three techniques of natural orifice specimen extraction surgery for rectal cancer[J]. Eur J Surg Oncol 2020, 2020, 46(10): e55-e61.
|
41 |
GaoG, ChenL, LuoR, et al. Short- and long-term outcomes for transvaginal specimen extraction versus minilaparotomy after robotic anterior resection for colorectal cancer: a mono-institution retrospective study[J]. World J Surg Oncol, 2020, 18(1): 190.
|
42 |
EfetovSK, TulinaIA, KimVD, et al. Natural orifice specimen extraction (NOSE) surgery with rectal eversion and total extra-abdominal resection[J]. Tech Coloproctol, 2019, 23(9): 899-902.
|
43 |
牛正川, 韦烨, 朱德祥, 等. 机器人腹部无切口直肠癌前切除术[J/CD]. 中华结直肠疾病电子杂志, 2018, 7(4): 332-336.
|
44 |
ChoiGS, ParkIJ, KangBM, et al. A novel approach of robotic-assisted anterior resection with transanal or transvaginal retrieval of the specimen for colorectal cancer[J]. Surg Endosc, 2009, 23(12): 2831-2835.
URL
|
45 |
GachabayovM, TulinaI, BergamaschiR, et al. Does transanal total mesorectal excision of rectal cancer improve histopathology metrics and/or complication rates? A meta-analysis[J]. Surg Oncol, 2019, 30: 47-51.
|
46 |
AdaminaM, BuchsNC, PennaM, et al. St.Gallen consensus on safe implementation of transanal total mesorectal excision[J]. Surg Endosc, 2018, 32(3): 1091-1103.
|
47 |
FrancisN, PennaM, MackenzieH, et al. Consensus on structured training curriculum for transanal total mesorectal excision (TaTME) [J]. Surg Endosc, 2017, 31(7): 2711-2719.
|
48 |
MaB, GaoP, SongY, et al. Transanal total mesorectal excision (taTME) for rectal cancer: a systematic review and meta-analysis of oncological and perioperative outcomes compared with laparoscopic total mesorectal excision[J]. BMC Cancer, 2016, 16: 380.
|
49 |
DeijenCL, VelthuisS, TsaiA, et al. COLOR III: a multicentre randomised clinical trial comparing transanal TME versus laparoscopic TME for mid and low rectal cancer[J]. Surg Endosc, 2016, 30(8): 3210-3215.
|
50 |
YeJ, ShenH, LiF, et al. Robotic-assisted transanal total mesorectal excision for rectal cancer: technique and results from a single institution[J]. Tech Coloproctol, 2020.
|
51 |
KuoLJ, NguJC, TongYS, et al. Combined robotic transanal total mesorectal excision (R-taTME) and single-site plus one-port (R-SSPO) technique for ultra-low rectal surgery-initial experience with a new operation approach[J]. Int J Colorectal Dis, 2017, 32(2): 249-254.
|
52 |
AtallahS, Martin-PerezB, PinanJ, et al. Robotic transanal total mesorectal excision: a pilot study[J]. Tech Coloproctol, 2014, 18(11): 1047-1053.
URL
|
53 |
KneistW, SteinH, RheinwaldM. Da Vinci Single-Port robot-assisted transanal mesorectal excision: a promising preclinical experience[J]. Surg Endosc, 2020, 34(7): 3232-3235.
|
54 |
CarmichaelH, D'AndreaAP, SkanckeM, et al. Feasibility of transanal total mesorectal excision (taTME) using the Medrobotics Flex® System[J]. Surg Endosc, 2020, 34(1): 485-491.
|
55 |
van den BosJ, JongenA, MelenhorstJ, et al. Near-infrared fluorescence image-guidance in anastomotic colorectal cancer surgery and its relation to serum markers of anastomotic leakage: a clinical pilot study[J]. Surg Endosc, 2019, 33(11): 3766-3774.
|
56 |
Blanco-ColinoR, Espin-BasanyE. Intraoperative use of ICG fluorescence imaging to reduce the risk of anastomotic leakage in colorectal surgery: a systematic review and meta-analysis[J]. Tech Coloproctol, 2018, 22(1): 15-23.
|
57 |
NishigoriN, KoyamaF, NakagawaT, et al. Visualization of Lymph/Blood Flow in Laparoscopic Colorectal Cancer Surgery by ICG Fluorescence Imaging (Lap-IGFI) [J]. Ann Surg Oncol, 2016, 23 (Suppl 2): S266-274.
|
58 |
BoniL, DavidG, ManganoA, et al. Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery[J]. Surg Endosc, 2015, 29(7): 2046-2055.
|
59 |
KazanowskiM, Al FurajiiH, CahillRA. Near-infrared laparoscopic fluorescence for pelvic side wall delta mapping in patients with rectal cancer--'PINPOINT' nodal assessment[J]. Colorectal Dis, 2015, 17 (Suppl 3): 32-35.
|
60 |
AnkersmitM, BonjerHJ, HanninkG, et al. Near-infrared fluorescence imaging for sentinel lymph node identification in colon cancer: a prospective single-center study and systematic review with meta-analysis[J]. Tech Coloproctol, 2019, 23(12): 1113-1126.
|
61 |
YeungTM, VolpiD, TullisID, et al. Identifying Ureters In Situ Under Fluorescence During Laparoscopic and Open Colorectal Surgery[J]. Ann Surg, 2016, 263(1): e1-2.
|
62 |
ParkH, FarnamRW. Novel Use of Indocyanine Green for Intraoperative, Real-time Localization of Ureter During Robot-Assisted Excision of Endometriosis[J]. J Minim Invasive Gynecol, 2015, 22(6s): S69.
|
63 |
SiddighiS, YuneJJ, HardestyJ. Indocyanine green for intraoperative localization of ureter[J]. Am J Obstet Gynecol, 2014, 211(4): 436.e1-2.
|
64 |
LietoE, AuricchioA, CardellaF, et al. Fluorescence-Guided Surgery in the Combined Treatment of Peritoneal Carcinomatosis from Colorectal Cancer: Preliminary Results and Considerations[J]. World J Surg, 2018, 42(4): 1154-1160.
|
65 |
HarlaarNJ, KollerM, de JonghSJ, et al. Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study[J]. Lancet Gastroenterol Hepatol, 2016, 1(4): 283-290.
|
66 |
DapriG, CahillR, BourgeoisP, et al. Peritumoural injection of indocyanine green fluorescence during transanal total mesorectal excision to identify the plane of dissection-a video vignette[J]. Colorectal Dis, 2017, 19(6): 599-600.
|
67 |
XuJ, TangB, LiT, et al. Robotic colorectal cancer surgery in China: a nationwide retrospective observational study[J]. Surg Endosc, 2020.
|
68 |
ClavienPA, BarkunJ, de OliveiraML, et al. The Clavien-Dindo classification of surgical complications: five-year experience[J]. Ann Surg, 2009, 250(2): 187-196.
|
69 |
柳欣欣, 刘江, 江志伟, 等. 微创及加速康复外科在结直肠手术中的应用[J]. 机器人外科学杂志, 2020, 1(1): 18-25.
|
70 |
QuiramBJ, CrippaJ, GrassF, et al. Impact of enhanced recovery on oncological outcomes following minimally invasive surgery for rectal cancer[J]. Br J Surg, 2019, 106(7): 922-929.
|
71 |
MartinAN, BerryPS, FrielCM, et al. Impact of minimally invasive surgery on short-term outcomes after rectal resection for neoplasm within the setting of an enhanced recovery program[J]. Surg Endosc, 2018, 32(5): 2517-2524.
|
72 |
KhreissW, HuebnerM, CimaRR, et al. Improving conventional recovery with enhanced recovery in minimally invasive surgery for rectal cancer[J]. Dis Colon Rectum, 2014, 57(5): 557-563.
URL
|
73 |
AsklidD, GerjyR, HjernF, et al. Robotic vs laparoscopic rectal tumour surgery: a cohort study[J]. Colorectal Dis, 2019, 21(2): 191-199.
|
74 |
中国医师协会内镜医师分会腹腔镜外科专业委员会, 中国医师协会结直肠肿瘤专业委员会腹腔镜专业委员会, 中华医学会外科学分会结直肠外科学组. 中国直肠癌侧方淋巴结转移诊疗专家共识(2019版) [J]. 中华胃肠外科杂志, 2019, 22(10): 901-912.
|
75 |
ChangW, LiuT, RenL, et al. A trinity technique for prevention of low rectal anastomotic leakage in the robotic era[J]. Eur J Surg Oncol, 2020.
|
76 |
XuJM, WeiY, WangXY, et al. Robot-assisted one-stage resection of rectal cancer with liver and lung metastases[J]. World J Gastroenterol, 2015, 21(9): 2848-2853.
|
77 |
NavarroJ, RhoSY, KangI, et al. Robotic simultaneous resection for colorectal liver metastasis: feasibility for all types of liver resection[J]. Langenbecks Arch Surg, 2019, 404(7): 895-908.
|
78 |
DwyerRH, ScheidtMJ, MarshallJS, et al. Safety and efficacy of synchronous robotic surgery for colorectal cancer with liver metastases[J]. J Robot Surg, 2018, 12(4): 603-606.
|
79 |
LinQ, YeQ, ZhuD, et al. Comparison of minimally invasive and open colorectal resections for patients undergoing simultaneous R0 resection for liver metastases: a propensity score analysis[J]. Int J Colorectal Dis, 2015, 30(3): 385-395.
|