切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2017, Vol. 06 ›› Issue (05) : 381 -386. doi: 10.3877/cma.j.issn.2095-3224.2017.05.006

所属专题: 文献

论著

在维吾尔族人群中探究miR-10b对结肠癌转移的作用与机制
苏莎莎1, 赫晓磊1, 高峰1,()   
  1. 1. 830000 新疆维吾尔自治区人民医院消化科
  • 收稿日期:2017-04-27 出版日期:2017-10-25
  • 通信作者: 高峰

Functions and regulation of miR-10b in Uyger colorectal cancer metastasis

Shasha Su1, Xiaolei He1, Feng Gao1,()   

  1. 1. Department of Gastroenterology, Xinjiang Uyger Muncipal People′Hospital, Urumchi Xinjiang 830000, China
  • Received:2017-04-27 Published:2017-10-25
  • Corresponding author: Feng Gao
  • About author:
    Corresponding author: Gao Feng, Email:
引用本文:

苏莎莎, 赫晓磊, 高峰. 在维吾尔族人群中探究miR-10b对结肠癌转移的作用与机制[J]. 中华结直肠疾病电子杂志, 2017, 06(05): 381-386.

Shasha Su, Xiaolei He, Feng Gao. Functions and regulation of miR-10b in Uyger colorectal cancer metastasis[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2017, 06(05): 381-386.

目的

探究在多种肿瘤中均发挥重要调节作用的miR-10b对维吾尔族结肠癌细胞转移的影响。

方法

采用miR-10b过表达或抑制的结肠癌细胞系SW620,在细胞水平验证miR-10b对细胞转移能力的影响及对KLF4的调控作用。在临床样本组织中检测miR-10b的表达以佐证miR-10b功能。

结果

维吾尔族结肠癌组织按照确诊时有无淋巴结或远处转移分为转移组(14例)和未转移组(16例),结肠癌转移组miR-10b的表达较强(t=-5.372,P<0.05)。在SW620细胞中转染miR-10b抑制剂以敲低miR-10b,与对照细胞相比,miR-10b表达水平的降低使SW620细胞的侵袭以及迁移能力明显降低(t=26.56,10.40,P均<0.05)。在SW620细胞中转染miR-10b抑制剂以下调其表达,通过实时定量RT-PCR及Western Blot检测细胞中KLF4 mRNA水平和蛋白水平的改变,结果显示miR-10b表达水平的降低,细胞内KLF4 mRNA水平和蛋白水平升高(t=3.78,P<0.05),提示miR-10b对KLF4 mRNA的调节是从转录和翻译两个水平发生作用的。我们敲降miR-10b的表达或者增加KLF4的表达,通过检测E-cadherin、cyclins D1以及p53的改变,发现miR-10b可能通过影响涉及EMT、细胞周期和细胞凋亡的某些独立的信号通路,对结肠癌的细胞功能发挥重要作用。

结论

在维吾尔族人群中miR-10b能够促进结肠癌细胞SW620的增殖与迁移,参与结肠癌的侵袭与转移。

Objective

To investigate the role of miR-10b in metastasis of colon cancer of Uyger patients.

Methods

miR-10b expression was tested on CRC samples which were divided into metastatic groups and non-metastic groups of Uyger petients.The miR-10b-overexpressed or down-regulated SW620 cells were used to test the effects of miR-10b on invasion and migration of SW620 cells and to observe how miR-10b regulating KLF4. The miR-10b/klf4-overexpressed or down-regulated SW620 cells were used to test E-cadherin, cyclins D1 and p53 expression to test the involved mechanism in the regulatory function of miR-10b on metastasis and proliferation in CRC cells.

Results

miR-10b was over-expressed in metastatic CRC samples, compared with non-metastic ones of Uyger patients (t=-5.372, P<0.005). Inhibition of miR-10b in SW620 cells led to a notable reduction in invasion and migration assay compared with control cells (t=26.56, 10.40, P<0.05). We transfected miR-10b inhibitor into SW620 cells, an in crease of KLF4 mRNA level and protein level in SW620 cells was observed (t=3.78, P<0.05). miR-10b knockdown and KLF4 overexpression upregulated E-cadherin expression. Correlated with the modulated expression of miR-10b: the inhibition of miR-10b caused downegulation of cyclins D1 and p53, which were partly abrogated after co-transfecting with miR-10b and siRNA KLF4.

Conclusions

Expression of miR-10b is up-regulated in the metastasis CRC tissues and cells. miR-10b controls the metastasis and proliferation of CRC cells. miR-10b may exert its effect on metastasis and prolieration of CRC cells by regulating the expression of KLF4.miR-10b appears to modulate several independent signaling pathways that involved EMT, cell cycle and apoptosis.

表1 荧光定量PCR检测miR-10b在大肠癌组织中的表达情况
图1 荧光定量PCR检测miR-10b在大肠癌组织中的表达情况
表2 Transwell小室侵袭和迁移实验穿膜细胞计数
图2 倒置显微镜下观察SW620细胞在Transwell小室侵袭和迁移的情况
图3A 实时定量RT-PCR检测KLF4 mRNA水平的变化3B Western Blot检测KLF4蛋白水平的变化
图4 miR-10b对大肠癌的细胞功能发挥作用可能存在的机制
[1]
Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA: a cancer journal for clinicians, 2011, 61(2):69-90.
[2]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015[J]. CA: a cancer journal for clinicians, 2015, 65(1), 5-29.
[3]
Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction[J]. Nature reviews Molecular cell biology, 2010, 11(4):252-263.
[4]
Ma L, Teruya-Feldstein J, Weinberg RA, et al.Tumour invasion and metastasis initiated by microRNA-10b in breast cancer[J]. Nature, 2007, 449(6) 682-688.
[5]
Gabriely G, Yi M, Narayan RS, et al. Human glioma growth is controlled by microRNA-10b[J]. Cancer Res, 2011 (71):3563-3572.
[6]
Ha TY. The Role of MicroRNAs in Regulatory T Cells and in the Immune Response[J]. Immune network, 2011, 11(1):11-41.
[7]
Ichimi T, Enokida H, Okuno Y, et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer[J]. International Journal of Cancer, 2009, 125(2):345-352.
[8]
Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer[J]. Cancer research, 2005, 65(16):7065-7070.
[9]
Li W, Xie L, He X, et al. Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma[J]. International Journal of Cancer, 2008, 123(7):1616-1622.
[10]
Ozen M, Creighton C J, Ozdemir M, et al. Widespread deregulation of microRNA expression in human prostate cancer[J]. Oncogene, 2007, 27(12):1788-1793.
[11]
Geiman DE, Ton-That H, Johnson JM, et al. Transactivation and growth suppression by the gut-enriched Kruppel-like factor (Kruppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction[J]. Nucleic Acids Res, 2000, (28):1106-1113.
[12]
Chen X, Johns DC, Geiman DE, et al. Kruppel-like factor 4 (gut-enriched Kruppel-like factor) inhibits cell proliferation by blocking G1/S progression of the cell cycle[J]. Biol Chem, 2001, (276):30423-30428.
[13]
Dang DT, Bachman KE, Mahatan CS, et al. Decreased expression of the gut-enriched Kruppel-like factor gene in intestinal adenomas of multiple intestinal neoplasia mice and in colonic adenomas of familial adenomatous polyposis patients[J]. FEBS Lett, 2000, (476) 203-207.
[14]
Ton-That H,Kaestner KH, Shields JM, et al. Expression of the gut-enriched Kruppel-like factor gene during development and intestinal tumorigenesis[J]. FEBS Lett, 1997, 419(2-3):239-243.
[15]
Shie JL, Chen ZY, O′Brien MJ, et al. Role of gut-enriched Kruppel-like factor in colonic cell growth and differentiation[J]. Am J Physiol Gastrointest Liver Physiol, 2000, 279(4):G806-814.
[16]
Zhao W, Hisamuddin IM, Nandan MO, et al. Identification of Krüppel-like factor 4 as a potential tumor suppressor gene in colorectalcancer[J]. Oncogene, 2004, 23(2):395-402.
[17]
Wei D, Gong W, Kanai M,et al. Drastic down-regulation of Kruppel-like factor 4 expression is critical in human gastric cancer development and progression[J]. Cancer Res, 2005, 65(7):2746-2754.
[18]
Katz JP, Perreault N, Goldstein BG, et al. Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach[J]. Gastroenterology, 2005, 128(4):935-945.
[19]
Dang DT, Chen X, Feng J, et al. Overexpression of Krüppel-like factor 4 in the human colon cancer cell line RKO leads to reduced tumorigenecity[J]. Oncogene, 2003, 22(22):3424-3430.
[20]
Geiman DE, Ton-That H, Johnson JM, et al. Transactivation and growth Suppression by the gut-enriched Krüppel-like factor (Krüppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction[J]. Nucleic Acids Res, 2000, 28(5):1106-1113.
[21]
Chen X, Johns DC, Geiman DE, et al. Krüppel-like factor 4 (gut-enriched Krüppel-like factor) inhibits cell proliferation by blocking G1/S progression of the cell cycle[J]. J Biol Chem, 2001, 276(32):30423-30428.
[22]
Dang DT, Bachman KE, Mahatan CS, et al. Decreased expression of the gut-enriched Krüppel-like factor gene in intestinal adenomas of multiple intestinal neoplasia mice and in colonic adenomas of familial adenomatous polyposis patients[J]. FEBS Lett, 2000, 476(3):203-207.
[23]
Ton-That H, Kaestner KH, Shields JM, et al. Expression of thegut-enriched Krüppel-like factor gene during development and intestinal tumorigenesis[J]. FEBS Lett, 1997, 419(2-3):239-243.
[24]
Zhao W, Hisamuddin IM, Nandan MO, et al. Identification of Krüppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer[J]. Oncogene, 2004, 23(2):395-402.
[25]
Wei D, Gong W, Kanai M, et al.Drastic down-regulation of Krüppel-like factor 4 expression is critical in humangastric cancer development and progression[J]. Cancer Res, 2005, 65(7):2746-2754.
[26]
Katz JP, Perreault N, Goldstein BG, et al. Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach[J]. Gastroenterology, 2005, 128(4):935-945.
[27]
Yang Y, Goldstein BG, Chao HH, et al. KLF4 and KLF5 regulate proliferation, apoptosis and invasion in esophageal cancer cells[J]. Cancer Biol Ther, 2005,4(11):1216-1221.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 付佳, 肖海敏, 武曦, 冯涛, 师帅. 年龄校正查尔森合并症指数对腹腔镜结直肠癌围手术期并发症的预测价值[J]. 中华普通外科学文献(电子版), 2023, 17(05): 336-341.
[5] 薛永婷, 高峰, 王雅楠, 屈莲平. 溶瘤病毒治疗在结直肠癌中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(05): 380-384.
[6] 武慧铭, 郭仁凯, 李辉宇. 机器人辅助下经自然腔道取标本手术治疗结直肠癌安全性和有效性的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(05): 395-400.
[7] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[8] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[9] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[10] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[11] 康海, 谭武宾, 周松, 毛正, 米泽振, 李铁求. 膀胱癌根治术后阴茎转移一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 523-525.
[12] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[13] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[14] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[15] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
阅读次数
全文


摘要