切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2019, Vol. 08 ›› Issue (04) : 358 -362. doi: 10.3877/cma.j.issn.2095-3224.2019.04.007

所属专题: 文献

论著

缺氧诱导BCL9促进结肠癌细胞的增殖与迁移
臧佳1, 谢亚运1, 李新星1, 张言言1, 胡志前1,()   
  1. 1. 200003 上海长征医院普外一科
  • 收稿日期:2018-10-11 出版日期:2019-08-25
  • 通信作者: 胡志前

Hypoxia induce BCL9 promote colorectal cancer proliferation and migration

Jia Zang1, Yayun Xie1, Xinxing Li1, Yanyan Zhang1, Zhiqian Hu1,()   

  1. 1. Department of General Surgery, Shanghai Changzheng Hospital, 200003 Shanghai, China
  • Received:2018-10-11 Published:2019-08-25
  • Corresponding author: Zhiqian Hu
  • About author:
    Corresponding author: Hu Zhiqian, Email:
引用本文:

臧佳, 谢亚运, 李新星, 张言言, 胡志前. 缺氧诱导BCL9促进结肠癌细胞的增殖与迁移[J]. 中华结直肠疾病电子杂志, 2019, 08(04): 358-362.

Jia Zang, Yayun Xie, Xinxing Li, Yanyan Zhang, Zhiqian Hu. Hypoxia induce BCL9 promote colorectal cancer proliferation and migration[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2019, 08(04): 358-362.

目的

探索缺氧对B-淋巴细胞瘤蛋白9(BCL9)的调控关系及BCL9对结肠癌细胞的生物学作用。

方法

收取20例结肠癌标本及同一患者的正常结肠标本,利用免疫组化技术、实时荧光定量PCR技术检测BCL9的表达;利用常氧或缺氧培养HCT116细胞,实时荧光定量PCR及蛋白印迹法(western-blot)检测BCL9的表达;构建包含BCL9启动子序列的荧光素酶报告载体,通过缺氧处理或过表达HIF1α,检测荧光素酶活性变化;通过过表达质粒或siRNA干扰BCL9的表达,随后检测HCT116细胞的增殖活性及迁移能力。

结果

免疫组化及实时荧光定量PCR检测显示肿瘤组织中BCL9表达明显高于正常组织[(3.25±0.53)vs.(1.03±0.12),P<0.05];缺氧培养HCT116细胞后BCL9的表达显著提高,[(6.71±0.83)vs.(1.54±0.21),P<0.05];同时,缺氧培养或过表达HIF1α能显著提高荧光素酶的活性[(3.53±0.75)vs.(0.96±0.15),(4.83±0.62)vs.(1.02±0.14);P<0.05];干扰BCL9的表达抑制HCT116细胞的增殖及迁移能力[(1.23±0.12)vs.(1.87±0.15),P<0.05];提高BCL9表达能促进HCT116细胞的增殖及迁移能力[(2.43±0.16)vs.(1.81±0.14),P<0.05]。

结论

缺氧可诱导BCL9在结肠癌中高表达,并通过BCL9促进结肠癌细胞增殖、迁移。

Objective

The purpose of the paper was to explore the regulation relationship between hypoxia and BCL9 in colorectal cancer cells and whether the BCL9 can influence the function of colorectal cancer cells.

Methods

Detected BCL9 in 20 cases of colorectal cancer and the normal colorectal tissue by immunohistochemistry and RT-qPCR; Assay the BCL9 expression in colorectal cancer cells under hypoxia condition or normoxia condition by RT-PCR and western-blot; Constructed luciferase plasmid which contain of the promoter of BCL9, by given the hypoxia condition to induce endogenous HIF-1α or use over-expression plasmid induced exogenous HIF-1α in HCT116 cells to explored the regulate relationship between HIF-1α and LDHA; Middle the expression of BCL9 by over-expression plasmid and siRNA, and detected the proliferation and migration by CCK8 assay and transwell assay.

Results

BCL9 is always over-expression in colorectal cancer [(3.25±0.53) vs. (1.03±0.12), P<0.05]; By given oxygen condition, we found that hypoxia can induce BCL9 over-expression in colorectal cancer cells [(6.71±0.83) vs.(1.54±0.21), P<0.05]; Both hypoxia and over-expression exogenous HIF-1α leaded luciferase activity enhanced; Using RNA interfere technique to knockdown the expression of HIF-1α will suppression LDHA expression [(3.53±0.75) vs. (0.96±0.15), (4.83±0.62) vs. (1.02±0.14); P<0.05]; Interfere the expression of BCL9 suppresion HCT116 cells proliferation and migration [(1.23±0.12) vs. (1.87±0.15), P<0.05]; On the other hand, over-expression BCL9 leaded to the opposite result [(2.43±0.16) vs. (1.81±0.14), P<0.05];

Conclusion

Hypoxia induce BCL9 over-expression and promote HCT116 cells proliferation and migration.

图1 肿瘤组织与正常组织的免疫组化与实时荧光定量PCR。1A:免疫组织化疗结果显示,肿瘤组织的BCL9表达量明显高于正常组织(10倍镜与40倍镜下);1B:实时荧光定量PCR检测发现BCL9 RNA的表达明显高于正常组织,P<0.05,差异具有统计学意义
图2 HIF1α调控BCL9表达。2A:BCL9启动子区缺氧诱导原件(HER)的分布;2B:实时荧光定量PCR检测BCL9 RNA的表达;2C:western-blot检测BCL9、HIF1α的表达;2D、2E:荧光素酶活性检测。代表P<0.05,差异具有统计学意义
图3 BCL9对结肠癌细胞增殖和迁移能力的影响。3A:实时荧光定量PCR检测BCL9干预效率;3B:CCK8实验检测干预BCL9后HCT116的增殖活性;3C、3D:Transwell实验检测干预BCL9后HCT116的增殖活性。代表P<0.05,差异具有统计学意义
[1]
Chapman-Smith A, Lutwyche JK, Whitelaw ML. Contribution of the Per/Arnt/Sim (PAS) domains to DNA binding by the basic helix- loop-helix PAS transcriptional regulators [J]. J Biol Chem, 2004, 279(7): 5353-5362.
[2]
Pugh CW, Tan CC, Jones RW, et al. Functional analysis of an oxygen-regulated transcriptional enhancer lying 3′ to the mouse erythropoietin gene [J]. Proc Natl Acad Sci USA, 1991, 88(23): 10553-10557.
[3]
Semenza GL. Targeting HIF-1 for cancer therapy [J]. Nat Rev Cancer, 2003, 3(10): 72l-732.
[4]
Brahimi-Horn C, Pouysségur J. The role of the hypoxia-inducible factor in tumor metabolism growth and invasion [J]. Bull Cancer, 2006, 93(8): E73-E80.
[5]
Mieszczane KJ, de la Roche M, Bienz M. A role of Pygopus as an anti-repressor in facilitating Wnt-dependent transcription [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(49): 19324-19329.
[6]
Mani M, Carrasco DE, Zhang Y, et al. BCL9 promotes tumor progression by conferring enhanced proliferative, metastatic, and angiogenic properties to cancer cells [J]. Cancer research, 2009, 69(19): 7577-7586.
[7]
Hyeon J, Ahn S, Lee JJ, et al. Prognostic significance of BCL9 expression in hepatocellular carcinoma [J]. Korean Journal of Pathology, 2013, 47(2): 130-136.
[8]
Brenner H, Kloor M, Pox CP. Colorectal cancer [J]. Lancet, 2014, 383(9927): 1490-1502.
[9]
Brembeck FH, Rosario M, Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of beta-catenin [J]. Current Opinion in Genetics & Development, 2006, 16(1): 51-59.
[10]
Kramps T, Peter O, Brunner E, et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex [J]. Cell, 2002, 109(1): 47-60.
[11]
Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network [J]. Clinical Cancer Research, 2007, 13(14): 4042-4045.
[12]
Krishnamachary B, Zagag D, Nagasawa H, et al. Hypoxia-inducible factor-1 -dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor null renal cell carcinoma mediated by TCF3 , ZFHX1A and ZFH X1B [J]. Cancer Res, 2006, 66(5): 2725-2731.
[13]
Munoz Najar UM, Neurath KM, Vumbaca F, et al. H ypoxia stimulates breast carcinoma cell invasion through MT1 MMP and MMP2 activation [J]. Oncogene, 2006, 25(16): 2379-2392.
[14]
Ke Q, Costa M. Hypoxia-inducible factor-1(HIF-1) [J]. Mol Pharmacol, 2006, 70(5): 1469-1480.
[1] 燕速, 霍博文, 徐惠宁. 4K荧光腹腔镜扩大右半结肠CME+D3根治术及No.206、No.204组淋巴结清扫术[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 14-14.
[2] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[3] 杜晓辉, 崔建新. 腹腔镜右半结肠癌D3根治术淋巴结清扫范围与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 5-8.
[4] 周岩冰, 刘晓东. 腹腔镜右半结肠癌D3根治术消化道吻合重建方式的选择[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 9-13.
[5] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[6] 徐伯麒, 陶亮, 章帆, 毛忠琦. 结肠癌患者淋巴结转移预测模型的建立[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 393-397.
[7] 莫钊鸿, 翟航, 苏日顺, 孟泓宇, 罗豪, 陈文豪, 许瑞云. U2AF2表达对肝细胞癌增殖和迁移的影响及其与预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 336-341.
[8] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[9] 侯文运, 刘恒昌, 窦利州, 陈海鹏, 郑朝旭, 王贵齐, 王锡山. 腹部无辅助切口内镜引导下取标本的腹腔镜辅助右半结肠癌根治术(保留回盲部)(附视频)[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 436-440.
[10] 唐新, 刁德昌, 廖伟林, 林佳鑫, 汪佳豪, 李文娟, 谢嘉欣, 敖琳, 李洪明, 易小江, 卢新泉, 冯晓创. 保留神经的鞘外游离技术在腹腔镜右半结肠癌D3根治术中的近远期疗效分析:基于倾向性评分匹配的回顾性队列研究[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 372-380.
[11] 陈润芝, 杨东梅, 徐慧婷. 信迪利单抗联合索凡替尼后线治疗MSS型BRAF突变的转移性结肠癌:个案报道并文献复习[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 431-435.
[12] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[13] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[14] 方辉, 李菲, 张帆, 魏强, 陈强谱. 外源性瘦素对梗阻性黄疸大鼠肠黏膜增殖的影响[J]. 中华临床医师杂志(电子版), 2023, 17(05): 575-580.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要