切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2016, Vol. 05 ›› Issue (03) : 254 -259. doi: 10.3877/cma.j.issn.2095-3224.2016.03.012

所属专题: 文献

综述

结直肠癌相关信号通路研究进展
周钊1, 牛洪欣1,()   
  1. 1. 250001 济南,山东省医学科学院;250022 济南,济南大学、山东省医学科学院医学与生命科学学院;250031 济南,山东省医学科学院附属医院微创外科
  • 收稿日期:2016-04-27 出版日期:2016-06-25
  • 通信作者: 牛洪欣
  • 基金资助:
    卫生部医药卫生科技发展研究中心课题(No.W2013FZ17)

Research developments of the signal pathways relevant to colorectal carcinoma

Zhao Zhou1, Hongxin Niu1,()   

  1. 1. Shandong Academy of Medical Sciences, Jinan 250001, China; School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250022, China; Department of Minimally Invasive Surgery, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan 250031, China
  • Received:2016-04-27 Published:2016-06-25
  • Corresponding author: Hongxin Niu
  • About author:
    Corresponding author: Niu Hongxin, Email:
引用本文:

周钊, 牛洪欣. 结直肠癌相关信号通路研究进展[J/OL]. 中华结直肠疾病电子杂志, 2016, 05(03): 254-259.

Zhao Zhou, Hongxin Niu. Research developments of the signal pathways relevant to colorectal carcinoma[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2016, 05(03): 254-259.

结直肠癌不是一种疾病而是一系列高度异质的复杂疾病,每个患者都具有各自的遗传学和表观遗传学背景。有充分的证据提示,从正常细胞到肿瘤细胞的转化归根到底是细胞的信号调控机制发生紊乱造成的,肿瘤在形成的过程中不仅存在异常信号的转导,信号转导的异常对肿瘤的发生也似乎是必需的。目前发现与结直肠癌有关的细胞信号转导通路主要有Wnt-β-catenin信号通路、Hedgehog信号通路、Notch信号通路、TGFβ-Smads信号通路、Jak-STAT信号通路、Ras-Raf-MAPK信号通路、PI3K-Akt-mTOR信号通路。本文对结直肠癌相关信号通路的研究进展进行综述。

Colorectal carcinoma is a series of highly heterogeneous complex diseases rather than a kind of disease. Every patient with colorectal cancer has respective genetics and epigenetics backgrounds. There is ample evidence that the transformation of cells from normal cells to tumor cells is brought about by the disorder of signal regulation mechanism. There is abnormal signal transduction in the process of tumor formation, and the disorder of signal transduction seems to be necessary in tumorigenesis. The cell signal transduction pathways relevant to colorectal cancer mainly include Wnt-β-catenin signal pathway, Hedgehog signal pathway, Notch signal pathway, TGFβ-Smads signal pathway, Jak-STAT signal pathway, Ras-Raf-MAPK signal pathway and PI3K-Akt-mTOR signal pathway. This article reviewed the research developments in the signal pathways relevant to colorectal carcinoma.

[1]
Calvert PM, Frucht H. The genetics of colorectal cancer [J]. Ann Inter Med, 2002, 137(7):603-612.
[2]
Kimelman D, Xu W. Beta-catenin destruction complex: insights and questions from from a structural perspective [J]. Oncogene, 2006, 25(57):7482-7491.
[3]
Martensson A, Oberg A, Jung A, et al. Beta-catenin expression in relation to genetic instability and prognosis in colorectal cancer [J]. Oncology reports, 2007, 17(2):447-452.
[4]
Wanitsuwan W. Overall expression of beta-catenin outperforms its nuclear accumulation in predicting outcomes of colorectal cancer [J]. World Journals of Gastroenterology, 2008, 14(39):6052-6059.
[5]
Elzagheid A, Buhmeida A, Korkeila E, et al. Nuclear beta-catenin expression as a prognostic factor in advanced colorectal carcinoma [J].World Journals of Gastroenterology, 2008, 14(24):3866-3871.
[6]
Kwon C, Cheng P, King IN, et al. Notch post-translationally regulates β-catenin protein in stem and progenitor cells [J]. Nature Cell Biology, 2011, 13(10):1244-1251.
[7]
Armura S, Matsunaga A, Kitamura T, et al. Reduce level of smoothened supresses intestinal tumorigenesis by down-regulation of Wnt signaling [J]. Gastroenterology, 2009, 137(2):629-638.
[8]
van den Brink GR, Bleuming SA, Hardwick JC, et al.India Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation [J]. Nature genetics, 2004, 36(3):277-282.
[9]
Dong GZ, Shim AR, Hyeon JS, et al. Inhibition of Wnt/β-Catenin Pathway by Dehydrocostus Lactone and Costunolide in Colon Cancer Cells [J]. Phytother Res, 2015, 29(5):680-686.
[10]
Qualtrough D, Buda A, Gaffield W, et al. Hedgehog signalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment [J]. Int J Cancer, 2004, 110(6):831-837.
[11]
Fu X, Deng H, Zhao L, et al. Distinct expression patterns of hedgehog ligands between cultured and primary colorectal cancers are associated with aberrant methylation of their promoters [J]. Mol Cell Biochem, 2010, 337(1-2):185-192.
[12]
Yoshimoto AN, Bernardazzi C, Carneiro AJ, et al. Hedgehog pathway signaling regulates human colon carcinoma HT-29 epithelial cell line apoptosis and cytokine secretion [J]. PLoS One, 2012, 7(9):e45332.
[13]
Wang H, Li YY, Wu YY, et al. Expression and clinical significance of hedgehog signaling pathway related components in colorectal cancer [J]. Asian Pacific J Cancer Prev, 2012, 13(5):2319-2324.
[14]
Yuan R, Ke J, Sun L, et al. HES1 promotes metastasis and predicts poor survival in patients with colorectal cancer [J]. Clin Exp Metastasis, 2015, 32(2):169-179.
[15]
Ozawa T, Kazama S, Akiyoshi T, et al. Nuclear Notch3 expression is associated with tumor recurrence in patients with stage II and III colorectal cancer [J]. Ann Surg Oncol, 2014, 21(8):2650-2658.
[16]
Dai Y, Wilson G, Huang B, et al. Silencing of Jagged1 inhibits cell growth and invasion in colorectal cancer [J]. Cell Death Dis, 2014, 5:e1170.
[17]
Rodilla V, Villanueva A, Obrador-Hevia A, et al. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer [J]. Proc Natl Acad Sci U S A, 2009, 106(15):6315-6320.
[18]
Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis [J]. Gastroenterology, 2008, 135(4):1079-1099.
[19]
Ilyas M, Efstathiou JA, Straub J, et al. Transforming growth factor beta stimulation of colorectal cancer cell lines: Type II receptor bypass and changes in adhesion molecule expression [J]. Proc Natl Acad Sd USA, 1999, 96(6):3087-3091.
[20]
Xu Y, Pasche B. TGF-beta signaling alterations and susceptibility to colorectal cancer [J]. Hum Mol Genet, 2007, 16(spec.no.1):R14-R20.
[21]
Tang Y, Katuri V, Srinvasan R, et al. Transforming growth factor-beta suppresses nonmetastatic colon cancer through Smad4 and adaptor protein ELF at an early stage of tumorigenesis [J]. Cancer Res, 2005, 65(10):4288-4237.
[22]
Slattery ML, Lundgreen A, Kadlubar SA, et al. JAK/STAT/SOCS-signaling pathway and colon and rectal cancer [J]. Mol Carcinog, 2013, 52(2):155-66.
[23]
Wang SW, Hu J, Guo QH, et al. AZD1480, a JAK inhibitor, inhibits cell growth and survival of colorectal cancer via modulating the JAK2/STAT3 signaling pathway [J]. Oncol Rep, 2014, 32(5):1991-1998.
[24]
Pandurangan AK, Esa NM. Signal transducer and activator of transcription 3 - a promising target in colitis-associated cancer. Asian Pac J Cancer Prev, 2014, 15(2):551-560.
[25]
Xiong H, Su WY, Liang QC, et al. Inhibition of STAT5 induces G1 cell cycle arrest and reduces tumor cell invasion in human colorectal cancer cells [J]. Lab Invest, 2009, 89(6):717-725.
[26]
Shareef MM, Shamloula MM, Elfert AA, et al. Expression of the signal transducer and activator of transcription factor 3 and Janus kinase 3 in colorectal carcinomas, colonic adenomas and ulcerative colitis [J]. Arab J Gastroenterol, 2009, 10(1):25-32.
[27]
Gordiziel C, Bratsch J, Moriggl R, et al. Both STAT1 and STAT3 are favourable prognostic determinants in colorectal carcinoma [J]. Br J Cancer, 2013, 109(1):138-46.
[28]
Lan YT, Jen-Kou L, Lin CH, et al. Mutations in the RAS and PI3K pathways are associated with metastatic location in colorectal cancers [J]. J Surg Oncol, 2015, 111(7):905-910.
[29]
Grabocka E, Pylayeva-Gupta Y, Jones MJ, et al. Wild-Type H-and N-Ras Promote Mutant K-Ras-Driven Tumorigenesis by Modulating the DNA Damage Response [J]. Cancer Cell, 2014, 25(2):243-256.
[30]
Stec R, Bodnar L, Charkiewicz R, et al. K-Ras gene mutation status as a prognostic and predictive factor in patients with colorectal cancer undergoingirinotecan-or oxaliplatin-based chemotherapy [J]. Cancer Biol Ther, 2012, 13(13):1235-1243.
[31]
Campbell IG, Russell SE, Choong DY, et al. Mutation of the PIK3CA gene in ovarian and breast cancer [J]. Cancer Res, 2004, 64(21):7678-7681.
[32]
Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers [J]. Science, 2004, 304(5670):554.
[33]
Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations [J]. Nat Rev Cancer, 2009, 9(8):550-562.
[34]
Jang KS, Song YS, Jang SH, et al. Clinicopathological significance of nuclear PTEN expression in colorectal adenocarcinoma [J]. Histopathology, 2010, 56(2):229-239.
[35]
Sawai H, Yasuda A, Ochi N, et al. Loss of PTEN expression is associated with colorectal cancer liver metastasis and poor patient survival. BMC Gastroenterol, 2008, 8:56.
[36]
Sartore-Bianchi A, Martini M, Molinari F, et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies [J]. Cancer Res, 2009, 69(5):1851-1857.
[37]
Prenen H, De Schutter J, Jacobs B, et al. PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer [J]. Clin Cancer Res, 2009, 15(9):3184-3188.
[38]
Di Popolo A, Memoli A, Apicella A, et al. IGF-II/IGF-I receptor pathway up-regulates COX-2 mRNA expression and PGE2 synthesis in Caco-2 human colon carcinoma cells [J]. Oncogene, 2000, 19(48):5517-5524.
[39]
Baron JA, Cole BF, Sandler RS, et al. A randomized trial of aspirin to prevent colorectal adenomas [J]. N Engl J Med, 2003, 348(10):891-910.
[40]
Rothwell PM, Wilson M, Elwin CE, et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials [J]. Lancet, 2010, 376(9754):1741-1750.
[41]
Peng L, Zhou Y, Wang Y, et al. Prognostic significance of COX-2 immunohistochemical expression in colorectal cancer: a meta-analysis of the literature [J]. PLoS One, 2013, 8(3):e58891.
[42]
Liao X, Lochhead P, Nishihara R, et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival [J]. N Engl J Med, 2012, 367(17):1596-1606.
[43]
Domingo E, Church DN, Sieber O, et al. Evaluation of PIK3CA mutation as a predictor of benefit from nonsteroidal anti-inflammatory drug therapy in colorectal cancer [J]. J Clin Oncol, 2013, 31(34):4297-4305.
[44]
Li A, Chen H, Lin M, et al. PIK3C2G copy number is associated with clinical outcomes of colorectal cancer patients treated with oxaliplatin [J]. Int J Clin Exp Med, 2015, 8(1):1137-1143.
[1] 唐丹, 姚晓曦, 杨博文, 薛绍龙, 李梦瑶, 韦柳杏, 郄明蓉. 双肾上腺皮质激素样激酶1对子宫内膜样腺癌患者临床特征的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 582-590.
[2] 罗青杉, 梅海涛, 郝家领, 蔡锦锋, 周润楷, 温玉刚. 连接蛋白43通过调控细胞周期抑制结直肠癌的增殖机制研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 344-349.
[3] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[4] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[5] 张敏, 朱建华, 缪雅芳, 郭锦荣. 菝葜皂苷元对肝癌HepG2细胞抑制作用的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 328-335.
[6] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[7] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[8] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[9] 赵磊, 刘文志, 林峰, 于剑, 孙铭骏, 崔佑刚, 张旭, 衣宇鹏, 于宝胜, 冯宁. 深部热疗在改善结直肠癌术后辅助化疗副反应及生活质量中的作用研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 488-493.
[10] 黄海洋, 邝永龙, 陈嘉胜. 基层医院结直肠肿瘤经自然腔道取标本手术30 例分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 510-518.
[11] 张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.
[12] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
[13] 任佳琪, 刁德昌, 何自衍, 张雪阳, 唐新, 李文娟, 李洪明, 卢新泉, 易小江. 网膜融合线导向的脾曲游离技术在左半结肠癌根治术中的应用[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 362-367.
[14] 张迪, 王春霞, 张学东, 李发馨, 庞淅文, 陈一锋, 张维胜, 王涛. 梗阻性左半结直肠癌自膨式金属支架置入后行腹腔镜手术与开腹手术的短期临床疗效比较[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 375-380.
[15] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?