1 |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30.
|
2 |
American Cancer Society. Cancer Facts & Figures 2016[R]. Atlanta, GA, USA: American Cancer Society, 2016.
|
3 |
Simon K. Colorectal cancer development and advances in screening[J]. Clin Interv Aging, 2016, 11: 967-976.
|
4 |
Siegel RL, Miller KD, Goding SA, et al. Colorectal cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(3): 145-164.
|
5 |
Zacek P, Bukowski M, Mehus A, et al. Dietary saturated fatty acid type impacts obesity-induced metabolic dysfunction and plasma lipidomic signatures in mice[J]. J Nutr Biochem, 2019, 64: 32-44.
|
6 |
O'Neill AM, Burrington CM, Gillaspie EA, et al. High-fat Western diet-induced obesity contributes to increased tumor growth in mouse models of human colon cancer[J]. Nutr Res, 2016, 36(12): 1325-1334.
|
7 |
Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease[J]. Nature, 2011, 474(7351): 298-306.
|
8 |
Tsuei J, Chau T, Mills D, et al. Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer[J]. Exp Biol Med, 2014, 239(11): 1489-1504.
|
9 |
Hofmann AF. The syndrome of ileal disease and the broken enterohepatic circulation: cholerheic enteropathy[J]. Gastroenterology, 1967, 52(4): 752-757.
|
10 |
Walters JRF, Tasleem AM, Omer OS, et al. A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis[J]. Clin Gastroenterol Hepatol, 2009, 7(11): 1189-1194.
|
11 |
Chen F, Ma L, Sartor RB, et al. Inflammatory-mediated repression of the rat ileal sodium-dependent bile acid transporter by c-fos nuclear translocation[J]. Gastroenterology 2002, 123(6): 2005-2016.
|
12 |
Neimark E, Chen F, Li X, et al. c-Fos is a critical mediator of inammatorymediated repression of the apical sodium-dependent bile acid transporter[J]. Gastroenterology, 2006, 131(2): 554-567.
|
13 |
O'Connor CJ, Wallace RG, Iwamoto K, et al. Bile salt damage of egg phosphatidylcholine liposomes[J]. Biochim Biophys Acta, 1985, 817(1): 95-102.
|
14 |
Schölmerich J, Becher MS, Schmidt K, et al. Influence of hydroxylation and conjugation of bile salts on their membrane-damaging properties–studies on isolated hepatocytes and lipid membrane vesicles[J]. Hepatology, 1984, 4(4): 661-666.
|
15 |
Powell AA, LaRue JM, Batta AK,et al. Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in HCT116 cells[J]. Biochem J 2001, 356(Pt 2): 481-486.
|
16 |
Shekels LL, Beste JE, Ho SB. Tauroursodeoxycholic acid protects in vitro models of human colonic cancer cells from cytotoxic effects of hydrophobic bile acids[J]. J Lab Clin Med, 1996, 127(1): 57-66.
|
17 |
Kakiyama G, Pandak WM, Gillevet PM, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis[J]. J Hepatol, 2013, 58(5): 949-955.
|
18 |
Atarashi K, Tanoue T, Oshima K,et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota[J]. Nature, 2014, 500(7461): 232-236.
|
19 |
Llopis M, Antolin M, Carol M, et al. Lactobacillus casei downregulates commensals' inflammatory signals in Crohn's disease mucosa[J]. Inflamm Bowel Dis, 2009, 15(2): 275-283.
|
20 |
Darfeuille-Michaud A, Boudeau J, Bulois P, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease[J]. Gastroenterology, 2004, 127(2): 412-421.
|
21 |
Bjarnason I, Zanelli G, Smith T, et al. Nonsteroidal antiinflammatory druginduced intestinal inflammation in humans[J]. Gastroenterology, 1987, 93(3): 480-489.
|
22 |
Bjarnason I, Peters TJ. Intestinal permeability, non-steroidal antiinflammatory drug enteropathy and inflammatory bowel disease: an overview[J]. Gut, 1989, 30(Spec_No): 22-28.
|
23 |
Elson CO, Sartor RB, Tennyson GS, et al. Experimental-models of inflammatory bowel-disease[J]. Gastroenterology, 1995, 109(4): 1344-1367.
|
24 |
Somasundaram S, Rafi S, Hayllar J, et al. Mitochondrial damage: a possible mechanism of the "topical" phase of NSAID induced injury to the rat intestine[J]. Gut, 1997, 41(3): 344-353.
|
25 |
Sigthorsson G, Simpson RJ, Walley M, et al. COX-1 and 2, intestinal integrity, and pathogenesis of nonsteroidal anti-inflammatory drug enteropathy in mice[J]. Gastroenterology, 2002, 122(7): 1913-1923.
|
26 |
Somasundaram S, Hayllar H, Rafi S, et al. The biochemical basis of nonsteroidal anti-inflammatory druginduced damage to the gastrointestinal tract: a review and a hypothesis[J]. Scand J Gastroenterol, 1995, 30(4): 289-299.
|
27 |
Wax J, Clinger WA, Varner P, et al. Relationship of enterohepatic cycle to ulcerogenesis in rat small bowel with flufenamic acid[J]. Gastroenterology, 1970, 58(6): 772-780.
|
28 |
Taylor NS, Bartlett JG. Binding of clostridium difficile cytotoxin and vancomycin by anion-exchange resins[J]. J Infect Dis, 1980, 141(1): 92-97.
|
29 |
Bailey ME. Endotoxin, bile-salts and renal-function in obstructive-jaundice[J]. Br J Surg, 1976, 63(10): 774-778.
|
30 |
Floch MH, Gershengoren W, Elliott S, et al. Bile acid inhibition of the intestinal microflora-a function for simple bile acids?[J]. Gastroenterology, 1971, 61(2): 228-233.
|
31 |
Williams RC, Showalter R, Kern F. In vivo effect of bile salts and cholestyramine on intestinal anaerobic bacteria[J]. Gastroenterology, 1975, 69(2): 483-491.
|
32 |
Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor[J]. Proc Natl Acad Sci USA, 2006, 103(10): 3920-3925.
|
33 |
Shekels LL, Lyftogt CT, Ho SB. Bile acid-induced alterations of mucin production in differentiated human colon cancer cell lines[J]. Int J Biochem Cell Biol, 1996, 28(2): 193-201.
|
34 |
Strauch ED, Yamaguchi J, Bass BL,et al. Bile salts regulate intestinal epithelial cell migration by nuclear factor-kappa B-induced expression of transforming growth factor-beta[J]. J Am Coll Surg, 2003, 197(6): 974-984.
|
35 |
Yamaguchi J, Toledo A, Bass BL, et al. Taurodeoxycholate increases intestinal epithelial cell proliferation through c-myc expression[J]. Surgery, 2004, 135(2): 215-221.
|
36 |
Bernardes-Silva CF, AOMCDami~ao, Sipahi AM, et al. Ursodeoxycholic acid ameliorates experimental ileitis counteracting intestinal barrier dysfunction and oxidative stress[J]. Dig Dis Sci 2004, 49(10): 1569-1574.
|
37 |
Kullmann F, Gross V, Ruschoff J, et al. Effect of ursodeoxycholic acid on the inflammatory activity of indomethacin-induced intestinal inflammation in rats[J]. Z Gastroenterol, 1997, 35(3): 171-178.
|
38 |
Uchida A, Yamada T, Hayakawa T, et al. Taurochenodeoxycholic acid ameliorates and ursodeoxycholic acid exacerbates small intestinal inflammation[J]. Am J Physiol, 1997, 272(5 Pt 1): G1249-1257.
|
39 |
Cipriani S, Mencarelli A, Bruno A, et al. Activation of the bile acid receptor GPBAR1 protects against gastrointestinal injury caused by nonsteroidal anti-inflammatory drugs and aspirin in mice[J]. Br J Pharmacol 2013, 168(1): 225-237.
|
40 |
Fiorucci S, Antonelli E, Distrutti E,et al. Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs[J]. Gastroenterology, 2005, 129(4): 1210-1224.
|
41 |
Kong J, Zhang Z, Musch MW, et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(1): G208-216.
|
42 |
Makishima M, Lu TT, Xie W, et al. Vitamin D receptor as an intestinal bile acid sensor[J]. Science, 2002, 296(5571): 1313-1316.
|
43 |
Fearon ER,Vogelstein B. A genetic model for colorectal tumorigenesis[J]. Cell. Metab, 1990, 61(5): 759-767.
|
44 |
Modica S, Murzilli S, Salvatore L, et al. Nuclear bile acid receptor FXR protects against intestinal tumorigenesis[J]. Cancer Res, 2008, 68(23): 9589-9594.
|
45 |
Maran RR, Thomas A, Roth M, et al. Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development[J]. J Pharm Exp Ther, 2009, 328(2): 469-477.
|
46 |
Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause of colon cancer[J]. World J Surg Oncol, 2014, 12: 164.
|
47 |
Payne CM, Bernstein C, Dvorak K, et al. Hydrophobic bile acids, genomic instability, Darwinian selection, and colon carcinogenesis[J]. Clin Exp Gastroenterol, 2008, 1: 19-47.
|
48 |
Washo-Stultz D, Crowley-Weber CL, KaterinaDvorakova, et al. Role of mitochondrial complexes I and II, reactive oxygen species and arachidonic acid metabolism in deoxycholate-induced apoptosis[J]. Cancer Lett, 2002, 177(2): 129-144.
|
49 |
Ridlon JM, Bajaj JS. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics[J]. Acta Pharm Sin B, 2015, 5(2): 99-105.
|
50 |
De Gottardi A, Touri F, Maurer CA, et al. The bile acid nuclear receptor FXR and the bile acid binding protein IBABP are differently expressed in colon cancer[J]. Dig Dis Sci, 2004, 49(6): 982-989.
|
51 |
Bailey AM, Zhan L, Maru D, et al. FXR silencing in human colon cancer by DNA methylation and KRAS signaling[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306(1): G48-G58.
|
52 |
Lax S, Schauer G, Prein K, et al. Expression of the nuclear bile acid receptor/farnesoid X receptor is reduced in human colon carcinoma compared to nonneoplastic mucosa independent from site and may be associated with adverse prognosis[J]. Int J Cancer, 2012, 130(10): 2232-2239.
|
53 |
Torres J, Bao XL, Iuga AC, et al. Farnesoid X receptor expression is decreased in colonic mucosa of patients with primary sclerosing cholangitis and colitis-associated neoplasia[J]. Inflamm Bowel Dis, 2013, 19(2): 275-282.
URL
|