| [1] |
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1): 12-49.
|
| [2] |
中国医师协会结直肠肿瘤专业委员会. 结直肠癌腹膜转移诊治专家共识(2025版)[J]. 中华胃肠外科杂志, 2025, 28(5): 441-449.
|
| [3] |
Jayaprakasam VS, Alvarez J, Omer DM, et al. Watch-and-wait approach to rectal cancer: the role of imaging[J]. Radiology, 2023, 307(1): e221529.
|
| [4] |
杨鋆,辛城霖,张忠涛. 中低位直肠癌的精准诊断与规范治疗[J]. 中华消化外科杂志, 2024, 23(1): 85-90.
|
| [5] |
Mi M, Weng S, Xu Z, et al. CSCO guidelines for colorectal cancer version 2023: updates and insights[J]. Chin J Cancer Res, 2023, 35(3): 233-238.
|
| [6] |
Benson AB, Venook AP, Al-Hawary MM, et al. Rectal Cancer, Version 2.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(10): 1139-1167.
|
| [7] |
Peng W, Wan L, Tong X, et al. Prospective and multi-reader evaluation of deep learning reconstruction-based accelerated rectal MRI: image quality, diagnostic performance, and reading time[J]. Eur Radiol, 2024, 34(11): 7438-7449.
|
| [8] |
严福华. 深度学习MRI重建算法的临床应用和发展前景[J]. 磁共振成像, 2023, 14(5): 8-10.
|
| [9] |
Lebel RM. Performance characterization of a novel deep learning-based MR image reconstruction pipeline[EB/OL]. [2022-11-07](2025-02-13).
URL
|
| [10] |
Kim M, Park T, Oh BY, et al. Performance reporting design in artificial intelligence studies using image-based TNM staging and prognostic parameters in rectal cancer: a systematic review[J]. Ann Coloproctol, 2024, 40(1): 13-26.
|
| [11] |
Oscanoa JA, Middione MJ, Alkan C, et al. Deep learning-based reconstruction for cardiac MRI: a review[J]. Bioengineering (Basel), 2023, 10(3): 334.
|
| [12] |
Johnson PM, Lin DJ, Zbontar J, et al. Deep learning reconstruction enables prospectively accelerated clinical knee MRI[J]. Radiology, 2023, 307(2): e220425.
|
| [13] |
Tsuboyama T, Onishi H, Nakamoto A, et al. Impact of deep learning reconstruction combined with a sharpening filter on single-shot fast spin-echo T2-weighted magnetic resonance imaging of the uterus[J]. Invest Radiol, 2022, 57(6): 379-386.
|
| [14] |
Park JC, Park KJ, Park MY, et al. Fast T2-weighted imaging with deep learning-based reconstruction: evaluation of image quality and diagnostic performance in patients undergoing radical prostatectomy[J]. J Magn Reson Imaging, 2022, 55(6): 1735-1744.
|
| [15] |
Cui J, Liu S, Tian Z, et al. ResLT: residual learning for long-tailed recognition[J]. IEEE Trans Pattern Anal Mach Intell, 2023, 45(3): 3695-3706.
|
| [16] |
Lee S, Palt S, Ma J, et al. Rectal MR imaging[J]. Radiol Clin North Am, 2025, 63(3): 419-434.
|
| [17] |
Nougaret S, Reinhold C, Mikhael HW, et al. The use of MR imaging in treatment planning for patients with rectal carcinoma: have you checked the "DISTANCE" ?[J]. Radiology, 2013, 268(2): 330-344.
|
| [18] |
Wetzel A, Viswanath S, Gorgun E, et al. Staging and restaging of rectal cancer with MRI: a pictorial review[J]. Semin Ultrasound CT MR, 2022, 43(6): 441-454.
|
| [19] |
Tomita H, Deguchi Y, Fukuchi H, et al. Combination of compressed sensing and parallel imaging for T2-weighted imaging of the oral cavity in healthy volunteers: comparison with parallel imaging[J]. Eur Radiol, 2021, 31(8): 6305-6311.
|
| [20] |
Cristobal-Huerta A, Poot D, Vogel MW, et al. Compressed sensing 3D-grase for faster high-resolution MRI[J]. Magn Reson Med, 2019, 82(3): 984-999.
|
| [21] |
Ishimoto Y, Ide S, Watanabe K, et al. Usefulness of pituitary high-resolution 3D MRI with deep-learning-based reconstruction for perioperative evaluation of pituitary adenomas[J]. Neuroradiology, 2024, 66(6): 937-945.
|
| [22] |
Wang S, Cao G, Wang Y, et al. Review and prospect: artificial intelligence in advanced medical imaging[J]. Front Radiol, 2021, 1: 781868.
|
| [23] |
Tang H, Hong M, Yu L, et al. Deep learning reconstruction for lumbar spine MRI acceleration: a prospective study[J]. Eur Radiol Exp, 2024, 8(1): 67.
|
| [24] |
Zhu L, Shi B, Ding B, et al. Accelerated T2W imaging with deep learning reconstruction in staging rectal cancer: a preliminary study[J]. J Imaging Inform Med, 2024, 12: 11.
|
| [25] |
Bae SH, Hwang J, Hong SS, et al. Clinical feasibility of accelerated diffusion weighted imaging of the abdomen with deep learning reconstruction: comparison with conventional diffusion weighted imaging[J]. Eur J Radiol, 2022, 154: 110428.
|
| [26] |
Tanabe M, Higashi M, Yonezawa T, et al. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique[J]. Magn Reson Imaging, 2021, 80: 121-126.
|
| [27] |
Kim B, Lee CM, Jang JK, et al. Deep learning-based imaging reconstruction for MRI after neoadjuvant chemoradiotherapy for rectal cancer: effects on image quality and assessment of treatment response[J]. Abdom Radiol (NY), 2023, 48(1): 201-210.
|
| [28] |
Gudbjartsson H, Patz S. The rician distribution of noisy MRI data[J]. Magn Reson Med, 1995, 34(6): 910-914.
|
| [29] |
Hou M, Zhou L, Sun J. Deep-learning-based 3D super-resolution MRI radiomics model: superior predictive performance in preoperative T-staging of rectal cancer[J]. Eur Radiol, 2023, 33(1): 1-10.
|
| [30] |
Borgheresi A, De Muzio F, Agostini A, et al. Lymph nodes evaluation in rectal cancer: where do we stand and future perspective[J]. J Clin Med, 2022,11(9): 2599
|
| [31] |
Stijns R, Philips B, Nagtegaal ID, et al. USPIO-enhanced MRI of lymph nodes in rectal cancer: a node-to-node comparison with histopathology[J]. Eur J Radiol, 2021, 138: 109636.
|
| [32] |
Langman G, Patel A, Bowley DM. Size and distribution of lymph nodes in rectal cancer resection specimens[J]. Dis Colon Rectum, 2015, 4(50): 406-414.
|
| [33] |
Zhu H, Zhang X, Li X, et al. Prediction of pathological nodal stage of locally advanced rectal cancer by collective features of multiple lymph nodes in magnetic resonance images before and after neoadjuvant chemoradiotherapy[J]. Chin J Cancer Res, 2019, 31(6): 984-992.
|
| [34] |
Feng W, Zhu L, Xia Y, et al. Deep learning-based reconstruction: a reliability assessment in preoperative magnetic resonance imaging for primary rectal cancer[J]. Quant Imaging Med Surg, 2024, 14(12): 8927-8941.
|