切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2023, Vol. 12 ›› Issue (01) : 70 -74. doi: 10.3877/cma.j.issn.2095-3224.2023.01.010

综述

PD-1抗体/PD-L1抗体在结直肠癌治疗中的应用现状及展望
吕靖芳1, 黄海洋2, 刘恩瑞3, 庄孟1, 王锡山1,()   
  1. 1. 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院结直肠外科
    2. 529200 广东省台山市人民医院胃肠外科
    3. 266000 青岛大学附属医院急诊外科
  • 收稿日期:2022-01-22 出版日期:2023-02-25
  • 通信作者: 王锡山
  • 基金资助:
    国家自然科学基金资助项目(82072732)

Application of PD-1 pathway blockage in the treatment of colorectal cancer

Jingfang Lv1, Haiyang Huang2, Enrui Liu3, Meng Zhuang1, Xishan Wang1,()   

  1. 1. Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
    2. Department of Gastrointestinal Surgery, Affiliated Taishan Hospital of Guangdong Medical University, Taishan 529200, China
    3. Department of Emergency Surgery, the Affiliated Hospital of Qingdao Uinversity, Qingdao 266000, China
  • Received:2022-01-22 Published:2023-02-25
  • Corresponding author: Xishan Wang
引用本文:

吕靖芳, 黄海洋, 刘恩瑞, 庄孟, 王锡山. PD-1抗体/PD-L1抗体在结直肠癌治疗中的应用现状及展望[J]. 中华结直肠疾病电子杂志, 2023, 12(01): 70-74.

Jingfang Lv, Haiyang Huang, Enrui Liu, Meng Zhuang, Xishan Wang. Application of PD-1 pathway blockage in the treatment of colorectal cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2023, 12(01): 70-74.

结直肠癌是第二大最常见的肿瘤死亡原因。免疫治疗逐渐成为结直肠癌手术切除等常规治疗方式以外的另一种治疗方法。目前对抗PD-1/抗PD-L1药物疗效及不良反应的报道各不相同。本文将从PD-1信号通路及其阻断剂、PD-1/PD-L1抗体在结直肠癌中的临床应用、结直肠癌患者对免疫治疗的抵抗、PD-1/PD-L1抗体治疗的不良反应、预测PD-1/PD-L1抗体治疗疗效的生物学标志物等方面进行综述。

Colorectal cancer is the second common cause of cancer death. Immunotherapy has became a new therapy apart from traditional therapy such as surgery,etc. There are controversial about the efficiency and adverse reaction of anti-PD-1/PD-L1 drugs. In this article, the research and application of PD-1 pathway blockage are reviewed from the aspects of PD-1 pathway and blockage, clinical applications of anti-PD-1/PD-L1 drugs in colorectal cancer, treatment resistance, adverse reactions and biomarkers of effective prediction.

[1]
Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point[J]. Nature, 2017, 541(7637): 321-330.
[2]
Pardoll D. Cancer and the immune system: basic concepts and targets for intervention[J]. Seminars in Oncology, 2015, 42(4): 523-538.
[3]
Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor[J]. Immunity, 1999, 11(2): 141-151.
[4]
Okazaki T, Tanaka Y, Nishio R, et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice[J]. Nature Medicine, 2003, 9(12): 1477-1483.
[5]
Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(19): 12293-12297.
[6]
Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion[J]. Nature Medicine, 2002, 8(8): 793-800.
[7]
Agata Y, Kawasaki A, Nishimura H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes[J]. International Immunology, 1996, 8(5): 765-772.
[8]
Curiel TJ, Wei S, Dong H, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity[J]. Nature Medicine, 2003, 9(5): 562-567.
[9]
Liu Y, Cheng Y, Xu Y, et al. Increased expression of programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor function and indicates poor prognosis in digestive cancers[J]. Oncogene, 2017, 36(44): 6143-6153.
[10]
Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates[J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2010, 28(19): 3167-3175.
[11]
Lipson EJ, Sharfman WH, Drake CG, et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2013, 19(2): 462-468.
[12]
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. The New England Journal of Medicine, 2012, 366(26): 2443-2454.
[13]
Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study[J]. The Lancet Oncology, 2017, 18(9): 1182-1191.
[14]
Overman MJ, Lonardi S, Wong KYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer[J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2018, 36(8): 773-779.
[15]
Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers[J]. Nature Medicine, 2020, 26(4): 566-576.
[16]
Patnaik A, Kang SP, Rasco D, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2015, 21(19): 4286-4293.
[17]
O'Neil BH, Wallmark JM, Lorente D, et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced colorectal carcinoma[J]. PloS One, 2017, 12(12): e0189848.
[18]
Le DT, Kim TW, Van Cutsem E, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164[J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2020, 38(1): 11-19.
[19]
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. The New England Journal of Medicine, 2015, 372(26): 2509-2520.
[20]
Rudek MA, Graham RA, Ratain MJ. Harmonization of renal function assessment is needed during early clinical development of oncology drugs[J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2016, 34(2): 103-104.
[21]
Diaz LAJr, Shiu KK, Kim TW, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study[J]. Lancet Oncol, 2022, 23(5): 659-670.
[22]
Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients[J]. Nature, 2014, 515(7528): 563-567.
[23]
Hellmann MD, Kim TW, Lee CB, et al. Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors[J]. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 2019, 30(7): 1134-1142.
[24]
Bendell J, Clardiello F, Tabernero J, et al. Efficacy and safety results from IMblaze370, a randomised Phase III study comparing atezolizumab+cobimetinib and atezolizumab monotherapy vs regorafenib in chemotherapy-refractory metastatic colorectal cancer[J]. Annals of Oncology, 2018, 29(suppl_5): v123.
[25]
Bendell JC, Powderly JD, Lieu CH, et al. Safety and efficacy of MPDL3280A (Suppl. 3) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC)[J]. Journal of Clinical Oncology, 2015, 33(suppl. 3): 704-704.
[26]
Segal NH, Saro J, Melero I, et al. Tabernero: phase I studies of the novel carcinoembryonic antigen T-cell bispecific (CEA-CD3 TCB) antibody as a single agent and in combination with atezolizumab: preliminary efficacy and safety in patients (pts) with metastatic colorectal cancer (mCRC)[J]. Annals of Oncology, 2017, 28(Suppl. 5): v134.
[27]
Levy A, Massard C, Soria JC, et al. Concurrent irradiation with the anti-programmed cell death ligand-1 immune checkpoint blocker durvalumab: Single centre subset analysis from a phase 1/2 trial[J]. European Journal of Cancer (Oxford, England: 1990), 2016, 68: 156-162.
[28]
Wang C, Park J, Ouyang C, et al. A pilot feasibility study of yttrium-90 liver radioembolization followed by durvalumab and tremelimumab in patients with microsatellite stable colorectal cancer liver metastases[J]. The Oncologist, 2020, 25(5): 382-e776.
[29]
Filatenkov A, Baker J, Mueller AM, et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2015, 21(16): 3727-3739.
[30]
Taylor K, Loo Yau H, Chakravarthy A, et al. An open-label, phase II multicohort study of an oral hypomethylating agent CC-486 and durvalumab in advanced solid tumors[J]. Journal for Immunotherapy of Cancer, 2020, 8(2): e000883.
[31]
Chen EX, Jonker DJ, Loree JM, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the canadian cancer trials group Co.26 study[J].JAMA Oncology, 2020, 6(6): 831-838.
[32]
Kim JH, Kim SY, Baek JY, et al. A phase Ⅱ study of avelumab monotherapy in patients with mismatch repair-deficient/microsatellite instability-high or POLE-mutated metastatic or unresectable colorectal cancer[J]. Cancer Research and Treatment: Official Journal of Korean Cancer Association, 2020, 52(4): 1135-1144.
[33]
Park SS, Dong H, Liu X, et al. PD-1 restrains radiotherapy-induced abscopal effect[J]. Cancer Immunology Research, 2015, 3(6): 610-619.
[34]
Woller N, Gürlevik E, Fleischmann-Mundt B, et al. Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses[J]. Molecular Therapy: the Journal of the American Society of Gene Therapy, 2015, 23(10): 1630-1640.
[35]
Sharma KK, Kalyani IH, Mohapatra J, et al. Evaluation of the oncolytic potential of R(2)B Mukteshwar vaccine strain of Newcastle disease virus (NDV) in a colon cancer cell line (SW-620)[J]. Archives of Virology, 2017, 162(9): 2705-2713.
[36]
Emens LA. Cancer vaccines: on the threshold of success[J]. Expert Opinion on Emerging Drugs, 2008, 13(2): 295-308.
[37]
Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer[J]. Nature, 2013, 500(7463): 415-421.
[38]
Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome[J]. Science (New York, NY) 2006, 313(5795): 1960-1964.
[39]
Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints[J]. Cancer Discovery, 2015, 5(1): 43-51.
[40]
Iwai Y, Hamanishi J, Chamoto K, et al. Cancer immunotherapies targeting the PD-1 signaling pathway[J]. Journal of Biomedical Science, 2017, 24(1): 26.
[41]
Wang PF, Chen Y, Song SY, et al. Immune-related adverse events associated with anti-PD-1/PD-L1 treatment for malignancies: a meta-analysis[J]. Frontiers in Pharmacology, 2017, 18(8): 730.
[42]
Sznol M, Chen L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer--response[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2013, 19(19): 5542.
[43]
Friedman CF, Proverbs-Singh TA, Postow MA. Treatment of the immune-related adverse effects of immune checkpoint inhibitors: a review[J]. JAMA Oncology, 2016, 2(10): 1346-1353.
[44]
Baretti M, Le DT. DNA mismatch repair in cancer[J]. Pharmacology & Therapeutics, 2018, 189: 45-62.
[45]
Cabel L, Riva F, Servois V, et al. Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study[J]. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 2017, 28(8): 1996-2001.
[46]
Schmetterer KG, Pickl WF. The IL-10/STAT3 axis: Contributions to immune tolerance by thymus and peripherally derived regulatory T-cells[J]. European Journal of Immunology, 2017, 47(8): 1256-1265.
[47]
Ibáñez-Vea M, Zuazo M, Gato M, et al. Myeloid-derived suppressor cells in the tumor microenvironment: current knowledge and future perspectives[J]. Arch Immunol Ther Exp (Warsz), 2018, 66(2): 113-123.
[48]
Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide[J]. Science (New York, NY), 2013, 342(6161): 971-976.
[49]
Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science(New York, NY), 2013, 342(6161): 967-970.
[50]
Wang H, Yao H, Li C, et al. PD-L2 expression in colorectal cancer: Independent prognostic effect and targetability by deglycosylation[J]. Oncoimmunology, 2017, 6(7): e1327494.
[51]
Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2014, 20(19): 5064-5074.
[52]
Danilova L, Wang H, Sunshine J, et al. Association of PD-1/PD-L axis expression with cytolytic activity, mutational load, and prognosis in melanoma and other solid tumors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): E7769-E7777.
[53]
Ahmad SM, Martinenaite E, Holmström M, et al. The inhibitory checkpoint, PD-L2, is a target for effector T cells: Novel possibilities for immune therapy[J]. Oncoimmunology, 2018, 7(2): e1390641.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[5] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[6] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[7] 常剑, 邱峰, 毛郁琪. 摄食抑制因子-1与腹腔镜结直肠癌根治术后肝转移的关系分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 502-505.
[8] 王晓燕, 肖佑, 肖戈, 王真权. 老年结直肠癌肺转移CT特征及高危因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 506-509.
[9] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[10] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[11] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[12] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[13] 梁文龙, 曹杰, 黄庆, 林泳, 黄红丽, 杨平, 李冠炜, 胡鹤. 信迪利单抗联合瑞戈非尼治疗晚期结直肠癌的疗效与安全性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 409-413.
[14] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[15] 姜里蛟, 张峰, 周玉萍. 多学科诊疗模式救治老年急性非静脉曲张性上消化道大出血患者的临床观察[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 520-524.
阅读次数
全文


摘要