切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2023, Vol. 12 ›› Issue (01) : 70 -74. doi: 10.3877/cma.j.issn.2095-3224.2023.01.010

综述

PD-1抗体/PD-L1抗体在结直肠癌治疗中的应用现状及展望
吕靖芳1, 黄海洋2, 刘恩瑞3, 庄孟1, 王锡山1,()   
  1. 1. 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院结直肠外科
    2. 529200 广东省台山市人民医院胃肠外科
    3. 266000 青岛大学附属医院急诊外科
  • 收稿日期:2022-01-22 出版日期:2023-02-25
  • 通信作者: 王锡山
  • 基金资助:
    国家自然科学基金资助项目(82072732)

Application of PD-1 pathway blockage in the treatment of colorectal cancer

Jingfang Lv1, Haiyang Huang2, Enrui Liu3, Meng Zhuang1, Xishan Wang1,()   

  1. 1. Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
    2. Department of Gastrointestinal Surgery, Affiliated Taishan Hospital of Guangdong Medical University, Taishan 529200, China
    3. Department of Emergency Surgery, the Affiliated Hospital of Qingdao Uinversity, Qingdao 266000, China
  • Received:2022-01-22 Published:2023-02-25
  • Corresponding author: Xishan Wang
引用本文:

吕靖芳, 黄海洋, 刘恩瑞, 庄孟, 王锡山. PD-1抗体/PD-L1抗体在结直肠癌治疗中的应用现状及展望[J/OL]. 中华结直肠疾病电子杂志, 2023, 12(01): 70-74.

Jingfang Lv, Haiyang Huang, Enrui Liu, Meng Zhuang, Xishan Wang. Application of PD-1 pathway blockage in the treatment of colorectal cancer[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2023, 12(01): 70-74.

结直肠癌是第二大最常见的肿瘤死亡原因。免疫治疗逐渐成为结直肠癌手术切除等常规治疗方式以外的另一种治疗方法。目前对抗PD-1/抗PD-L1药物疗效及不良反应的报道各不相同。本文将从PD-1信号通路及其阻断剂、PD-1/PD-L1抗体在结直肠癌中的临床应用、结直肠癌患者对免疫治疗的抵抗、PD-1/PD-L1抗体治疗的不良反应、预测PD-1/PD-L1抗体治疗疗效的生物学标志物等方面进行综述。

Colorectal cancer is the second common cause of cancer death. Immunotherapy has became a new therapy apart from traditional therapy such as surgery,etc. There are controversial about the efficiency and adverse reaction of anti-PD-1/PD-L1 drugs. In this article, the research and application of PD-1 pathway blockage are reviewed from the aspects of PD-1 pathway and blockage, clinical applications of anti-PD-1/PD-L1 drugs in colorectal cancer, treatment resistance, adverse reactions and biomarkers of effective prediction.

[1]
Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point[J]. Nature, 2017, 541(7637): 321-330.
[2]
Pardoll D. Cancer and the immune system: basic concepts and targets for intervention[J]. Seminars in Oncology, 2015, 42(4): 523-538.
[3]
Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor[J]. Immunity, 1999, 11(2): 141-151.
[4]
Okazaki T, Tanaka Y, Nishio R, et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice[J]. Nature Medicine, 2003, 9(12): 1477-1483.
[5]
Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(19): 12293-12297.
[6]
Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion[J]. Nature Medicine, 2002, 8(8): 793-800.
[7]
Agata Y, Kawasaki A, Nishimura H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes[J]. International Immunology, 1996, 8(5): 765-772.
[8]
Curiel TJ, Wei S, Dong H, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity[J]. Nature Medicine, 2003, 9(5): 562-567.
[9]
Liu Y, Cheng Y, Xu Y, et al. Increased expression of programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor function and indicates poor prognosis in digestive cancers[J]. Oncogene, 2017, 36(44): 6143-6153.
[10]
Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates[J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2010, 28(19): 3167-3175.
[11]
Lipson EJ, Sharfman WH, Drake CG, et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2013, 19(2): 462-468.
[12]
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. The New England Journal of Medicine, 2012, 366(26): 2443-2454.
[13]
Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study[J]. The Lancet Oncology, 2017, 18(9): 1182-1191.
[14]
Overman MJ, Lonardi S, Wong KYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer[J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2018, 36(8): 773-779.
[15]
Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers[J]. Nature Medicine, 2020, 26(4): 566-576.
[16]
Patnaik A, Kang SP, Rasco D, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2015, 21(19): 4286-4293.
[17]
O'Neil BH, Wallmark JM, Lorente D, et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced colorectal carcinoma[J]. PloS One, 2017, 12(12): e0189848.
[18]
Le DT, Kim TW, Van Cutsem E, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164[J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2020, 38(1): 11-19.
[19]
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. The New England Journal of Medicine, 2015, 372(26): 2509-2520.
[20]
Rudek MA, Graham RA, Ratain MJ. Harmonization of renal function assessment is needed during early clinical development of oncology drugs[J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2016, 34(2): 103-104.
[21]
Diaz LAJr, Shiu KK, Kim TW, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study[J]. Lancet Oncol, 2022, 23(5): 659-670.
[22]
Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients[J]. Nature, 2014, 515(7528): 563-567.
[23]
Hellmann MD, Kim TW, Lee CB, et al. Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors[J]. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 2019, 30(7): 1134-1142.
[24]
Bendell J, Clardiello F, Tabernero J, et al. Efficacy and safety results from IMblaze370, a randomised Phase III study comparing atezolizumab+cobimetinib and atezolizumab monotherapy vs regorafenib in chemotherapy-refractory metastatic colorectal cancer[J]. Annals of Oncology, 2018, 29(suppl_5): v123.
[25]
Bendell JC, Powderly JD, Lieu CH, et al. Safety and efficacy of MPDL3280A (Suppl. 3) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC)[J]. Journal of Clinical Oncology, 2015, 33(suppl. 3): 704-704.
[26]
Segal NH, Saro J, Melero I, et al. Tabernero: phase I studies of the novel carcinoembryonic antigen T-cell bispecific (CEA-CD3 TCB) antibody as a single agent and in combination with atezolizumab: preliminary efficacy and safety in patients (pts) with metastatic colorectal cancer (mCRC)[J]. Annals of Oncology, 2017, 28(Suppl. 5): v134.
[27]
Levy A, Massard C, Soria JC, et al. Concurrent irradiation with the anti-programmed cell death ligand-1 immune checkpoint blocker durvalumab: Single centre subset analysis from a phase 1/2 trial[J]. European Journal of Cancer (Oxford, England: 1990), 2016, 68: 156-162.
[28]
Wang C, Park J, Ouyang C, et al. A pilot feasibility study of yttrium-90 liver radioembolization followed by durvalumab and tremelimumab in patients with microsatellite stable colorectal cancer liver metastases[J]. The Oncologist, 2020, 25(5): 382-e776.
[29]
Filatenkov A, Baker J, Mueller AM, et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2015, 21(16): 3727-3739.
[30]
Taylor K, Loo Yau H, Chakravarthy A, et al. An open-label, phase II multicohort study of an oral hypomethylating agent CC-486 and durvalumab in advanced solid tumors[J]. Journal for Immunotherapy of Cancer, 2020, 8(2): e000883.
[31]
Chen EX, Jonker DJ, Loree JM, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the canadian cancer trials group Co.26 study[J].JAMA Oncology, 2020, 6(6): 831-838.
[32]
Kim JH, Kim SY, Baek JY, et al. A phase Ⅱ study of avelumab monotherapy in patients with mismatch repair-deficient/microsatellite instability-high or POLE-mutated metastatic or unresectable colorectal cancer[J]. Cancer Research and Treatment: Official Journal of Korean Cancer Association, 2020, 52(4): 1135-1144.
[33]
Park SS, Dong H, Liu X, et al. PD-1 restrains radiotherapy-induced abscopal effect[J]. Cancer Immunology Research, 2015, 3(6): 610-619.
[34]
Woller N, Gürlevik E, Fleischmann-Mundt B, et al. Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses[J]. Molecular Therapy: the Journal of the American Society of Gene Therapy, 2015, 23(10): 1630-1640.
[35]
Sharma KK, Kalyani IH, Mohapatra J, et al. Evaluation of the oncolytic potential of R(2)B Mukteshwar vaccine strain of Newcastle disease virus (NDV) in a colon cancer cell line (SW-620)[J]. Archives of Virology, 2017, 162(9): 2705-2713.
[36]
Emens LA. Cancer vaccines: on the threshold of success[J]. Expert Opinion on Emerging Drugs, 2008, 13(2): 295-308.
[37]
Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer[J]. Nature, 2013, 500(7463): 415-421.
[38]
Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome[J]. Science (New York, NY) 2006, 313(5795): 1960-1964.
[39]
Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints[J]. Cancer Discovery, 2015, 5(1): 43-51.
[40]
Iwai Y, Hamanishi J, Chamoto K, et al. Cancer immunotherapies targeting the PD-1 signaling pathway[J]. Journal of Biomedical Science, 2017, 24(1): 26.
[41]
Wang PF, Chen Y, Song SY, et al. Immune-related adverse events associated with anti-PD-1/PD-L1 treatment for malignancies: a meta-analysis[J]. Frontiers in Pharmacology, 2017, 18(8): 730.
[42]
Sznol M, Chen L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer--response[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2013, 19(19): 5542.
[43]
Friedman CF, Proverbs-Singh TA, Postow MA. Treatment of the immune-related adverse effects of immune checkpoint inhibitors: a review[J]. JAMA Oncology, 2016, 2(10): 1346-1353.
[44]
Baretti M, Le DT. DNA mismatch repair in cancer[J]. Pharmacology & Therapeutics, 2018, 189: 45-62.
[45]
Cabel L, Riva F, Servois V, et al. Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study[J]. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 2017, 28(8): 1996-2001.
[46]
Schmetterer KG, Pickl WF. The IL-10/STAT3 axis: Contributions to immune tolerance by thymus and peripherally derived regulatory T-cells[J]. European Journal of Immunology, 2017, 47(8): 1256-1265.
[47]
Ibáñez-Vea M, Zuazo M, Gato M, et al. Myeloid-derived suppressor cells in the tumor microenvironment: current knowledge and future perspectives[J]. Arch Immunol Ther Exp (Warsz), 2018, 66(2): 113-123.
[48]
Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide[J]. Science (New York, NY), 2013, 342(6161): 971-976.
[49]
Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science(New York, NY), 2013, 342(6161): 967-970.
[50]
Wang H, Yao H, Li C, et al. PD-L2 expression in colorectal cancer: Independent prognostic effect and targetability by deglycosylation[J]. Oncoimmunology, 2017, 6(7): e1327494.
[51]
Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2014, 20(19): 5064-5074.
[52]
Danilova L, Wang H, Sunshine J, et al. Association of PD-1/PD-L axis expression with cytolytic activity, mutational load, and prognosis in melanoma and other solid tumors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): E7769-E7777.
[53]
Ahmad SM, Martinenaite E, Holmström M, et al. The inhibitory checkpoint, PD-L2, is a target for effector T cells: Novel possibilities for immune therapy[J]. Oncoimmunology, 2018, 7(2): e1390641.
[1] 宋勇, 李东炫, 王翔, 李锐. 基于数据挖掘法分析3 种超声造影剂不良反应信号[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 890-898.
[2] 罗青杉, 梅海涛, 郝家领, 蔡锦锋, 周润楷, 温玉刚. 连接蛋白43通过调控细胞周期抑制结直肠癌的增殖机制研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 344-349.
[3] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[4] 许月芳, 刘旺, 曾妙甜, 郭宇姝. 多粘菌素B和多粘菌素E治疗外科多重耐药菌感染临床疗效及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 700-703.
[5] 何岩, 向文采. 七氟醚与异丙酚联合氯胺酮麻醉在疝修补术中的镇静镇痛效果及安全性[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 566-569.
[6] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[7] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[8] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[9] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[10] 赵磊, 刘文志, 林峰, 于剑, 孙铭骏, 崔佑刚, 张旭, 衣宇鹏, 于宝胜, 冯宁. 深部热疗在改善结直肠癌术后辅助化疗副反应及生活质量中的作用研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 488-493.
[11] 黄海洋, 邝永龙, 陈嘉胜. 基层医院结直肠肿瘤经自然腔道取标本手术30 例分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 510-518.
[12] 任佳琪, 刁德昌, 何自衍, 张雪阳, 唐新, 李文娟, 李洪明, 卢新泉, 易小江. 网膜融合线导向的脾曲游离技术在左半结肠癌根治术中的应用[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 362-367.
[13] 张迪, 王春霞, 张学东, 李发馨, 庞淅文, 陈一锋, 张维胜, 王涛. 梗阻性左半结直肠癌自膨式金属支架置入后行腹腔镜手术与开腹手术的短期临床疗效比较[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 375-380.
[14] 张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.
[15] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?