切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2021, Vol. 10 ›› Issue (01) : 81 -85. doi: 10.3877/cma.j.issn.2095-3224.2021.01.012

所属专题: 文献

论著

粪肠球菌预测结直肠癌复发的研究
李重1, 陈飞1, 王洪伟1,()   
  1. 1. 150001 哈尔滨医科大学附属第四医院普外科
  • 收稿日期:2020-06-19 出版日期:2021-02-25
  • 通信作者: 王洪伟

Fecal Enterococcus faecalis for prediction of recurrence in colorectal cancer

Zhong Li1   

  1. 1. Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
  • Received:2020-06-19 Published:2021-02-25
引用本文:

李重, 陈飞, 王洪伟. 粪肠球菌预测结直肠癌复发的研究[J]. 中华结直肠疾病电子杂志, 2021, 10(01): 81-85.

Zhong Li. Fecal Enterococcus faecalis for prediction of recurrence in colorectal cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2021, 10(01): 81-85.

目的

探索结直肠癌患者粪便样本中粪肠球菌丰度对于患者复发的预测意义。

方法

选取哈尔滨医科大学附属第四医院普外科结直肠癌复发患者与非复发患者的粪便样本共103例,通过16 s测序技术寻找差异的肠道菌群,通过统计学分析探索差异菌群与患者临床病理学指标及无复发生存之间的关系。

结果

粪肠球菌在复发患者粪便组织中丰度更高;粪便样本中,粪肠球菌丰度更高的患者预后不良的病理指标更多;同时发现高丰度粪肠球菌患者总生存时间和无复发生存时间更短。

结论

粪便样本中粪肠球菌丰度未来可能是判断结直肠癌患者预后新的标志物。

Objective

To explore the significance of the abundance of enterococcus faecalis in the prediction of recurrence in patients with colorectal cancer.

Methods

All The 103 fecal samples were collected from patients with recurrent colorectal cancer and non-recurrent colorectal cancer at the deparment of general surgery in the fourth affiliated hospital of Harbin Medical University. 16S sequencing technology was used to search for different intestinal flora. Statistical analysis was used to explore the relationship between different flora and clinical pathological indicators of patients and relapse-free survival.

Results

Enterococcus faecalis in patients with recurrent organization is higher abundance in stool samples, the patients who have higher abundance in stool samples has more pathological indicators of poor prognosis, meanwhile we also find that high abundance of dung enterococcus in patients have shorter total survival time and shorter relapse-free survival.

Conclusion

The abundance of Enterococcus faecalis in fecal samples may be a new marker to judge the prognosis of patients with colorectal cancer in the future.

图1 10对复发与非复发患者粪便样本PCA分析
图2 16 s测序差异表达菌群的LDA分析
图3 83例复发与非复发患者粪肠球菌的表达比较
表1 粪肠球菌表达量与患者的一般病理特征关系(例)
图4 无复发生存时间
图5 总生存时间
1
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013[J]. CA Cancer J Clin, 2013, 63(1): 11-30.
2
Walko CM, Lindley C. Capecitabine: a review[J]. Clin Ther, 2005, 27(1): 23-44.
3
Kelland L. The resurgence of platinum-based cancer chemotherapy[J]. Nat Rev Cancer, 2007, 7(8): 573-584.
4
Dahan L, Sadok A, Formento JL, et al. Modulation of cellular redox state underlies antagonism between oxaliplatin and cetuximab in human colorectal cancer cell lines[J]. Br J Pharmacol, 2009, 158(2): 610-620.
5
Arthur JC, Perez-Chanona E, Muhlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota[J]. Science, 2012, 338(6103): 120-123.
6
Man SM, Zhu Q, Zhu L, et al. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer[J]. Cell, 2015, 162(1): 45-58.
7
Garrett WS. Cancer and the microbiota[J]. Science, 2015, 348(6230): 80-86.
8
Zitvogel L, Galluzzi L, Viaud S, et al. Cancer and the gut microbiota: an unexpected link[J]. Sci Transl Med, 2015, 7(271): 271ps1.
9
Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 2015, 350(6264): 1084-1089.
10
Vetizou M, Pitt JM, Daillere R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science, 2015, 350(6264): 1079-1084.
11
Schirmer M, Smeekens SP, Vlamakis H, et al. Linking the human gut microbiome to inflammatory cytokine production capacity[J]. Cell, 2016, 167(7): 1897.
12
Geravand M, Fallah P, Yaghoobi MH, et al. Investigation of enterococcus faecalis population in patients with polyp and colorectal cancer in comparison of healthy individuals[J]. Arq Gastroenterol, 2019, 56(2): 141-145.
13
De Almeida CV, Lulli M, di Pilato V, et al. Differential responses of colorectal cancer cell lines to enterococcus faecalis' strains isolated from healthy donors and colorectal cancer patients[J]. J Clin Med, 2019, 8(3): 36-48.
14
Fan TJ, Goeser L, Naziripour A, et al. Enterococcus faecalis gluconate phosphotransferase system accelerates experimental colitis and bacterial killing by macrophages. Infect immun[J]. 2019, 87(7): 32-36.
15
Maekawa T, Fukaya R, Takamatsu S, et al. Possible involvement of Enterococcus infection in the pathogenesis of chronic pancreatitis and cancer[J]. Biochem Biophys Res Commun, 2018, 506(4): 962-969.
16
Anders S, McCarthy DJ, Chen Y, et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor[J]. Nat Protoc, 2013, 8(9): 1765-1786.
17
Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions[J]. Genome Biol, 2013, 14(4): R36.
18
Lawrence H, Saskia L, Elisabeth D, et al. RECIST 1.1-Update and clarification: From the RECIST committee[J]. Eur J Cancer, 2016, 62:132-137.
19
Bertotti A, Sassi F. Molecular pathways: Sensitivity and resistance to anti-EGFR antibodies[J]. Clin Cancer Res, 2015, 21(15): 3377-3383.
20
Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009[J]. CA Cancer J Clin, 2009, 59(4): 225-249.
21
Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations[J]. Sci Transl Med, 2016, 8(328): 328rv4.
22
Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer[J]. J Clin Oncol, 2010, 28(7): 1254-1261.
23
Dallas NA, Xia L, Fan F, et al. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition[J]. Cancer Res, 2009, 69(5): 1951-1957.
24
Esteller M. Epigenetics in cancer[J]. N Engl J Med, 2008, 358(11): 1148-1159.
25
Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science, 2013, 342(6161): 967-970.
26
Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide[J]. Science, 2013, 342(6161): 971-976.
27
Wang W, Kryczek I, Dostal L, et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer[J]. Cell, 2016, 165(5): 1092-1105.
28
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206.
29
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3): 548-633.
30
Jiang HY, Ling ZX, Zhang YH, et al. Altered fecal microbiota composition in patients with major depressive disorder[J]. Brain Behav Immun, 2015, 48:186-194.
31
Kosuke M, Reiko N, Zhi RQ, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis[J]. Gut, 2016, 65(12):1973-1980.
32
Wang T, Cai G, Qiu Y, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers[J]. ISME J, 2012, 6(2): 320-329.
33
Balamurugan R, Rajendiran E, George S, et al. Realtime polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer[J]. J Gastroenterol Hepatol, 2008, 23(8 Pt 1):1298-1303.
34
Wang X, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells[J]. Gastroenterology, 2007, 132(2): 551-561.
35
Wang X, Allen TD, May RJ, et al. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect[J]. Cancer Res, 2008, 68(23): 9909-9917.
36
Wang X, Yang Y, Huycke MM, et al. Commensal-infected macrophages induce dedifferentiation and reprogramming of epithelial cells during colorectal carcinogenesis[J]. Oncotarget 2017; 8: 102176-102190.
37
Huycke MM, Abrams V, Moore DR, et al. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA[J]. Carcinogenesis 2002; 23: 529-536.
[1] 孙帼, 谢迎东, 徐超丽, 杨斌. 超声联合临床特征的列线图模型预测甲状腺乳头状癌淋巴结转移的价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 734-742.
[2] 应康, 杨璨莹, 刘凤珍, 陈丽丽, 刘燕娜. 左心室心肌应变对无症状重度主动脉瓣狭窄患者的预后评估价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 581-587.
[3] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[4] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[5] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[6] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[7] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[8] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[9] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[10] 鲁鑫, 许佳怡, 刘洋, 杨琴, 鞠雯雯, 徐缨龙. 早期LC术与PTCD续贯LC术治疗急性胆囊炎对患者肝功能及预后的影响比较[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 648-650.
[11] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[12] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[13] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[14] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
[15] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
阅读次数
全文


摘要