切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2021, Vol. 10 ›› Issue (01) : 81 -85. doi: 10.3877/cma.j.issn.2095-3224.2021.01.012

所属专题: 文献

论著

粪肠球菌预测结直肠癌复发的研究
李重1, 陈飞1, 王洪伟1,()   
  1. 1. 150001 哈尔滨医科大学附属第四医院普外科
  • 收稿日期:2020-06-19 出版日期:2021-02-25
  • 通信作者: 王洪伟

Fecal Enterococcus faecalis for prediction of recurrence in colorectal cancer

Zhong Li1   

  1. 1. Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
  • Received:2020-06-19 Published:2021-02-25
引用本文:

李重, 陈飞, 王洪伟. 粪肠球菌预测结直肠癌复发的研究[J/OL]. 中华结直肠疾病电子杂志, 2021, 10(01): 81-85.

Zhong Li. Fecal Enterococcus faecalis for prediction of recurrence in colorectal cancer[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2021, 10(01): 81-85.

目的

探索结直肠癌患者粪便样本中粪肠球菌丰度对于患者复发的预测意义。

方法

选取哈尔滨医科大学附属第四医院普外科结直肠癌复发患者与非复发患者的粪便样本共103例,通过16 s测序技术寻找差异的肠道菌群,通过统计学分析探索差异菌群与患者临床病理学指标及无复发生存之间的关系。

结果

粪肠球菌在复发患者粪便组织中丰度更高;粪便样本中,粪肠球菌丰度更高的患者预后不良的病理指标更多;同时发现高丰度粪肠球菌患者总生存时间和无复发生存时间更短。

结论

粪便样本中粪肠球菌丰度未来可能是判断结直肠癌患者预后新的标志物。

Objective

To explore the significance of the abundance of enterococcus faecalis in the prediction of recurrence in patients with colorectal cancer.

Methods

All The 103 fecal samples were collected from patients with recurrent colorectal cancer and non-recurrent colorectal cancer at the deparment of general surgery in the fourth affiliated hospital of Harbin Medical University. 16S sequencing technology was used to search for different intestinal flora. Statistical analysis was used to explore the relationship between different flora and clinical pathological indicators of patients and relapse-free survival.

Results

Enterococcus faecalis in patients with recurrent organization is higher abundance in stool samples, the patients who have higher abundance in stool samples has more pathological indicators of poor prognosis, meanwhile we also find that high abundance of dung enterococcus in patients have shorter total survival time and shorter relapse-free survival.

Conclusion

The abundance of Enterococcus faecalis in fecal samples may be a new marker to judge the prognosis of patients with colorectal cancer in the future.

图1 10对复发与非复发患者粪便样本PCA分析
图2 16 s测序差异表达菌群的LDA分析
图3 83例复发与非复发患者粪肠球菌的表达比较
表1 粪肠球菌表达量与患者的一般病理特征关系(例)
图4 无复发生存时间
图5 总生存时间
1
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013[J]. CA Cancer J Clin, 2013, 63(1): 11-30.
2
Walko CM, Lindley C. Capecitabine: a review[J]. Clin Ther, 2005, 27(1): 23-44.
3
Kelland L. The resurgence of platinum-based cancer chemotherapy[J]. Nat Rev Cancer, 2007, 7(8): 573-584.
4
Dahan L, Sadok A, Formento JL, et al. Modulation of cellular redox state underlies antagonism between oxaliplatin and cetuximab in human colorectal cancer cell lines[J]. Br J Pharmacol, 2009, 158(2): 610-620.
5
Arthur JC, Perez-Chanona E, Muhlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota[J]. Science, 2012, 338(6103): 120-123.
6
Man SM, Zhu Q, Zhu L, et al. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer[J]. Cell, 2015, 162(1): 45-58.
7
Garrett WS. Cancer and the microbiota[J]. Science, 2015, 348(6230): 80-86.
8
Zitvogel L, Galluzzi L, Viaud S, et al. Cancer and the gut microbiota: an unexpected link[J]. Sci Transl Med, 2015, 7(271): 271ps1.
9
Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 2015, 350(6264): 1084-1089.
10
Vetizou M, Pitt JM, Daillere R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science, 2015, 350(6264): 1079-1084.
11
Schirmer M, Smeekens SP, Vlamakis H, et al. Linking the human gut microbiome to inflammatory cytokine production capacity[J]. Cell, 2016, 167(7): 1897.
12
Geravand M, Fallah P, Yaghoobi MH, et al. Investigation of enterococcus faecalis population in patients with polyp and colorectal cancer in comparison of healthy individuals[J]. Arq Gastroenterol, 2019, 56(2): 141-145.
13
De Almeida CV, Lulli M, di Pilato V, et al. Differential responses of colorectal cancer cell lines to enterococcus faecalis' strains isolated from healthy donors and colorectal cancer patients[J]. J Clin Med, 2019, 8(3): 36-48.
14
Fan TJ, Goeser L, Naziripour A, et al. Enterococcus faecalis gluconate phosphotransferase system accelerates experimental colitis and bacterial killing by macrophages. Infect immun[J]. 2019, 87(7): 32-36.
15
Maekawa T, Fukaya R, Takamatsu S, et al. Possible involvement of Enterococcus infection in the pathogenesis of chronic pancreatitis and cancer[J]. Biochem Biophys Res Commun, 2018, 506(4): 962-969.
16
Anders S, McCarthy DJ, Chen Y, et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor[J]. Nat Protoc, 2013, 8(9): 1765-1786.
17
Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions[J]. Genome Biol, 2013, 14(4): R36.
18
Lawrence H, Saskia L, Elisabeth D, et al. RECIST 1.1-Update and clarification: From the RECIST committee[J]. Eur J Cancer, 2016, 62:132-137.
19
Bertotti A, Sassi F. Molecular pathways: Sensitivity and resistance to anti-EGFR antibodies[J]. Clin Cancer Res, 2015, 21(15): 3377-3383.
20
Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009[J]. CA Cancer J Clin, 2009, 59(4): 225-249.
21
Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations[J]. Sci Transl Med, 2016, 8(328): 328rv4.
22
Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer[J]. J Clin Oncol, 2010, 28(7): 1254-1261.
23
Dallas NA, Xia L, Fan F, et al. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition[J]. Cancer Res, 2009, 69(5): 1951-1957.
24
Esteller M. Epigenetics in cancer[J]. N Engl J Med, 2008, 358(11): 1148-1159.
25
Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science, 2013, 342(6161): 967-970.
26
Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide[J]. Science, 2013, 342(6161): 971-976.
27
Wang W, Kryczek I, Dostal L, et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer[J]. Cell, 2016, 165(5): 1092-1105.
28
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206.
29
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3): 548-633.
30
Jiang HY, Ling ZX, Zhang YH, et al. Altered fecal microbiota composition in patients with major depressive disorder[J]. Brain Behav Immun, 2015, 48:186-194.
31
Kosuke M, Reiko N, Zhi RQ, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis[J]. Gut, 2016, 65(12):1973-1980.
32
Wang T, Cai G, Qiu Y, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers[J]. ISME J, 2012, 6(2): 320-329.
33
Balamurugan R, Rajendiran E, George S, et al. Realtime polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer[J]. J Gastroenterol Hepatol, 2008, 23(8 Pt 1):1298-1303.
34
Wang X, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells[J]. Gastroenterology, 2007, 132(2): 551-561.
35
Wang X, Allen TD, May RJ, et al. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect[J]. Cancer Res, 2008, 68(23): 9909-9917.
36
Wang X, Yang Y, Huycke MM, et al. Commensal-infected macrophages induce dedifferentiation and reprogramming of epithelial cells during colorectal carcinogenesis[J]. Oncotarget 2017; 8: 102176-102190.
37
Huycke MM, Abrams V, Moore DR, et al. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA[J]. Carcinogenesis 2002; 23: 529-536.
[1] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[2] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[3] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[4] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[5] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[6] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[7] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[8] 谢田伟, 庞于樊, 吴丽. 超声引导下不同消融术对甲状腺良性结节体积缩减率、复发率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 80-83.
[9] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[10] 皮尔地瓦斯·麦麦提玉素甫, 李慧灵, 艾克拜尔·艾力, 李赞林, 王志, 克力木·阿不都热依木. 生物补片修补巨大复发性腹壁切口疝临床疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 624-628.
[11] 陈樽, 王平, 金华, 周美玲, 李青青, 黄永刚. 肌肉减少症预测结直肠癌术后切口疝发生的应用研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 639-644.
[12] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[13] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
[14] 郭曌蓉, 王歆光, 刘毅强, 何英剑, 王立泽, 杨飏, 汪星, 曹威, 谷重山, 范铁, 李金锋, 范照青. 不同亚型乳腺叶状肿瘤的临床病理特征及预后危险因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 524-532.
[15] 王曦娅, 尹弘青, 丁伟, 徐滨, 于海源, 马东升, 邵军. 桥本背景下甲状腺乳头状癌多参数分析预测大容量淋巴结转移[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 548-554.
阅读次数
全文


摘要