1 |
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013[J]. CA Cancer J Clin, 2013, 63(1): 11-30.
|
2 |
Walko CM, Lindley C. Capecitabine: a review[J]. Clin Ther, 2005, 27(1): 23-44.
|
3 |
Kelland L. The resurgence of platinum-based cancer chemotherapy[J]. Nat Rev Cancer, 2007, 7(8): 573-584.
|
4 |
Dahan L, Sadok A, Formento JL, et al. Modulation of cellular redox state underlies antagonism between oxaliplatin and cetuximab in human colorectal cancer cell lines[J]. Br J Pharmacol, 2009, 158(2): 610-620.
|
5 |
Arthur JC, Perez-Chanona E, Muhlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota[J]. Science, 2012, 338(6103): 120-123.
|
6 |
Man SM, Zhu Q, Zhu L, et al. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer[J]. Cell, 2015, 162(1): 45-58.
|
7 |
Garrett WS. Cancer and the microbiota[J]. Science, 2015, 348(6230): 80-86.
|
8 |
Zitvogel L, Galluzzi L, Viaud S, et al. Cancer and the gut microbiota: an unexpected link[J]. Sci Transl Med, 2015, 7(271): 271ps1.
|
9 |
Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 2015, 350(6264): 1084-1089.
|
10 |
Vetizou M, Pitt JM, Daillere R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science, 2015, 350(6264): 1079-1084.
|
11 |
Schirmer M, Smeekens SP, Vlamakis H, et al. Linking the human gut microbiome to inflammatory cytokine production capacity[J]. Cell, 2016, 167(7): 1897.
|
12 |
Geravand M, Fallah P, Yaghoobi MH, et al. Investigation of enterococcus faecalis population in patients with polyp and colorectal cancer in comparison of healthy individuals[J]. Arq Gastroenterol, 2019, 56(2): 141-145.
|
13 |
De Almeida CV, Lulli M, di Pilato V, et al. Differential responses of colorectal cancer cell lines to enterococcus faecalis' strains isolated from healthy donors and colorectal cancer patients[J]. J Clin Med, 2019, 8(3): 36-48.
|
14 |
Fan TJ, Goeser L, Naziripour A, et al. Enterococcus faecalis gluconate phosphotransferase system accelerates experimental colitis and bacterial killing by macrophages. Infect immun[J]. 2019, 87(7): 32-36.
|
15 |
Maekawa T, Fukaya R, Takamatsu S, et al. Possible involvement of Enterococcus infection in the pathogenesis of chronic pancreatitis and cancer[J]. Biochem Biophys Res Commun, 2018, 506(4): 962-969.
|
16 |
Anders S, McCarthy DJ, Chen Y, et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor[J]. Nat Protoc, 2013, 8(9): 1765-1786.
|
17 |
Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions[J]. Genome Biol, 2013, 14(4): R36.
|
18 |
Lawrence H, Saskia L, Elisabeth D, et al. RECIST 1.1-Update and clarification: From the RECIST committee[J]. Eur J Cancer, 2016, 62:132-137.
|
19 |
Bertotti A, Sassi F. Molecular pathways: Sensitivity and resistance to anti-EGFR antibodies[J]. Clin Cancer Res, 2015, 21(15): 3377-3383.
|
20 |
Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009[J]. CA Cancer J Clin, 2009, 59(4): 225-249.
|
21 |
Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations[J]. Sci Transl Med, 2016, 8(328): 328rv4.
|
22 |
Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer[J]. J Clin Oncol, 2010, 28(7): 1254-1261.
|
23 |
Dallas NA, Xia L, Fan F, et al. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition[J]. Cancer Res, 2009, 69(5): 1951-1957.
|
24 |
Esteller M. Epigenetics in cancer[J]. N Engl J Med, 2008, 358(11): 1148-1159.
|
25 |
Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science, 2013, 342(6161): 967-970.
|
26 |
Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide[J]. Science, 2013, 342(6161): 971-976.
|
27 |
Wang W, Kryczek I, Dostal L, et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer[J]. Cell, 2016, 165(5): 1092-1105.
|
28 |
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206.
|
29 |
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3): 548-633.
|
30 |
Jiang HY, Ling ZX, Zhang YH, et al. Altered fecal microbiota composition in patients with major depressive disorder[J]. Brain Behav Immun, 2015, 48:186-194.
|
31 |
Kosuke M, Reiko N, Zhi RQ, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis[J]. Gut, 2016, 65(12):1973-1980.
|
32 |
Wang T, Cai G, Qiu Y, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers[J]. ISME J, 2012, 6(2): 320-329.
|
33 |
Balamurugan R, Rajendiran E, George S, et al. Realtime polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer[J]. J Gastroenterol Hepatol, 2008, 23(8 Pt 1):1298-1303.
|
34 |
Wang X, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells[J]. Gastroenterology, 2007, 132(2): 551-561.
|
35 |
Wang X, Allen TD, May RJ, et al. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect[J]. Cancer Res, 2008, 68(23): 9909-9917.
|
36 |
Wang X, Yang Y, Huycke MM, et al. Commensal-infected macrophages induce dedifferentiation and reprogramming of epithelial cells during colorectal carcinogenesis[J]. Oncotarget 2017; 8: 102176-102190.
|
37 |
Huycke MM, Abrams V, Moore DR, et al. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA[J]. Carcinogenesis 2002; 23: 529-536.
|