切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2021, Vol. 10 ›› Issue (01) : 86 -89. doi: 10.3877/cma.j.issn.2095-3224.2021.01.013

所属专题: 文献

综述

铁死亡在结直肠疾病中的研究进展
熊寰1, 朱亿豪1, 胡志乔1, 袁子茗1, 胡汉卿1, 汤庆超1,()   
  1. 1. 150081 哈尔滨医科大学附属第二医院结直肠肿瘤外科
  • 收稿日期:2020-05-20 出版日期:2021-02-25
  • 通信作者: 汤庆超
  • 基金资助:
    吴阶平医学基金会(No.320.2710.1849)

Research progress of ferroptosis in colorectal diseases

Huan Xiong1, Yihao Zhu1, Zhiqiao Hu1, Ziming Yuan1, Hanqing Hu1, Qingchao Tang1,()   

  1. 1. Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
  • Received:2020-05-20 Published:2021-02-25
  • Corresponding author: Qingchao Tang
引用本文:

熊寰, 朱亿豪, 胡志乔, 袁子茗, 胡汉卿, 汤庆超. 铁死亡在结直肠疾病中的研究进展[J]. 中华结直肠疾病电子杂志, 2021, 10(01): 86-89.

Huan Xiong, Yihao Zhu, Zhiqiao Hu, Ziming Yuan, Hanqing Hu, Qingchao Tang. Research progress of ferroptosis in colorectal diseases[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2021, 10(01): 86-89.

铁死亡是一种新发现的铁依赖的调节性细胞死亡形式,其发生的核心在于脂质活性氧(L-ROS)的过量累积,而这一过程受多条分子通路的影响。既往结直肠疾病的相关研究发现,铁死亡通路被激活是非肿瘤性疾病中细胞死亡的重要机制,同时也能抑制结直肠肿瘤的发生与发展。靶向铁死亡治疗方式与传统治疗方式联合应用有望成为结直肠疾病治疗新方向。

Ferroptosis is a newly recognized form of iron-dependent regulated cell death. The core of its occurrence is the excessive accumulation of lipid reactive oxygen species, a process affected by multiple molecular pathways. Previous studies on colorectal diseases have found that activation of the ferroptosis-related pathways is an important pathogenesis of cell death in non-neoplastic diseases, and can inhibit the occurrence and progression of colorectal cancer. The combination of targeted ferroptosis therapy and traditional therapy is expected to be a new direction in the treatment of colorectal diseases.

[1]
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018 [J]. Cell Death and Differentiation, 2018, 25(3): 486-541.
[2]
Wu J, Minikes AM, Gao M, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling [J]. Nature, 2019, 572(7769): 402-406.
[3]
Xie Y, Zhu S, Song X, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity [J]. Cell Rep, 2017, 20(7): 1692-1704.
[4]
Xu M, Tao J, Yang Y, et al. Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis [J]. Cell Death Dis, 2020, 11(2): 86.
[5]
Li Y, Feng D, Wang Z, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion [J]. Cell Death Differ, 2019, 26(11): 2284-2299.
[6]
Xie Y, Hou W, Song X, et al. Ferroptosis: process and function [J]. Cell Death and Differentiation, 2016, 23(3): 369-379.
[7]
Wu G, Fang YZ, Yang S, et al. Glutathione metabolism and its implications for health [J]. The Journal of Nutrition, 2004, 134(3): 489-492.
[8]
Mandal PK, Seiler A, Perisic T, et al. System x(c)- and thioredoxin reductase 1 cooperatively rescue glutathione deficiency [J]. J Biol Chem, 2010, 285(29): 22244-22253.
[9]
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death [J]. Cell, 2012, 149(5): 1060-1072.

URL    
[10]
Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis [J]. Proc Natl Acad Sci USA, 2016, 113(34): E4966-4975.
[11]
Agmon E. Lipid homeostasis and regulated cell death [J]. Curr opin Chem biol, 2017, 39: 83-89.
[12]
Daniels TR, Bernabeu E, Rodríguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer [J]. Biochimica et Biophysica Acta, 2012, 1820(3): 291-317.
[13]
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease [J]. Cell, 2017, 171(2): 273-285.
[14]
Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis [J]. Nature, 2019, 575(7784): 688-692.
[15]
Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4 [J]. Cell, 2014, 156(1-2): 317-331.

URL    
[16]
Guo J, Xu B, Han Q, et al. Ferroptosis: A novel anti-tumor action for cisplatin [J]. Cancer Res Treat, 2018, 50(2): 445-460.
[17]
Sui X, Zhang R, Liu S, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer [J]. Frontiers in Pharmacology, 2018, 9: 1371.
[18]
Yuan H, Li X, Zhang X, et al. Identification of ACSL4 as a biomarker and contributor of ferroptosis [J]. Biochem Biophys Res Commun, 2016, 478(3): 1338-1343.
[19]
Park S, Oh J, Kim M. Bromelain effectively suppresses Kras-mutant colorectal cancer by stimulating ferroptosis [J]. Animal Cells and Systems, 2018, 22(5): 334-340.
[20]
Chang LC, Chiang SK, Chen SE, et al. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis [J]. Cancer letters, 2018, 416: 124-137.
[21]
Malfa GA, Tomasello B, Acquaviva R, et al. Raf (Betulaceae) extract induced HO-1 expression and ferroptosis cell death in human colon cancer cells [J]. Int J Mol Sci, 2019, 20(11): 2723.
[22]
Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression [J]. Nature, 2015, 520(7545): 57-62.
[23]
Lee YS, Lee DH, Choudry HA, et al. Ferroptosis-induced endoplasmic reticulum stress: cross-talk between ferroptosis and apoptosis [J]. Mol Cancer Res, 2018, 16(7): 1073-1076.
[24]
Del Re DP, Amgalan D, Linkermann A, et al. Fundamental mechanisms of regulated cell death and implications for heart disease [J]. Physiological Reviews, 2019, 99(4): 1765-1817.
[25]
Lei G, Zhang Y, Koppula P, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression [J]. Cell Res, 2020, 30(2): 146-162.
[26]
Rouyer M, Francois E, Cunha AS, et al. Effectiveness of cetuximab as first-line therapy for patients with wild-type KRAS and unresectable metastatic colorectal cancer in real-life practice: results of the EREBUS cohort [J]. Clin Colorectal Cancer, 2018, 17(2): 129-139.
[27]
American Gastroenterological A. Management of mild-to-moderate ulcerative colitis: patient guide [J]. Gastroenterology, 2019, 156(3): 766-767.
[28]
Jiang XL. Different therapy for different types of ulcerative colitis in China [J]. World J Gastroenterol, 2004, 10(10): 1513-1520.
[1] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[2] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[3] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[4] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[5] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[6] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[7] 张海涛, 康婵娟, 翟静洁. 胰管支架置入治疗急性胆源性胰腺炎效果观察[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 654-657.
[8] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[9] 杨雪, 张伟, 尚培中, 宋创业, 尚丹丹, 张蔚. 胆囊十二指肠瘘结石经瘘口排出后自愈一例报道[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 707-708.
[10] 孔博, 张璟, 吕珂. 超声技术在复杂腹壁疝诊治中的作用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 670-673.
[11] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[12] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[13] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[14] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[15] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
阅读次数
全文


摘要