[1] |
Svensson T, Yamaji T, Budhathoki S, et al. Alcohol consumption, genetic variants in the alcohol- and folate metabolic pathways and colorectal cancer risk: the JPHC Study[J]. Sci Rep, 2016, 6:36607.
|
[2] |
Tuan J, Chen YX. Dietary and Lifestyle Factors Associated with Colorectal Cancer Risk and Interactions with Microbiota: Fiber, Red or Processed Meat and Alcoholic Drinks[J]. Gastrointest Tumors, 2016, 3(1):17-24.
|
[3] |
Yang C, Wang X, Huang CH, et al. Passive Smoking and Risk of Colorectal Cancer: A Meta-analysis of Observational Studies[J]. Asia Pac J Public Health, 2016, 28(5):394-403.
|
[4] |
Goss PE, Strasser-Weippl K, Lee-Bychkovsky BL, et al.Challenges to effective cancer control in China, India, and Russia[J]. Lancet Oncol, 2014, 15(5):489-538.
|
[5] |
Varghese C and Shin HR, Strengthening cancer control in China[J]. Lancet Oncol, 2014, 15(5):484-485.
|
[6] |
Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis[J]. Nat Rev Cancer, 2007, 7(8):599-612.
|
[7] |
Halsted CH, Villanueva JA, Devlin AM, et al., Metabolic interactions of alcohol and folate[J]. J Nutr, 2002, 132(8 Suppl):2367S-2372S.
|
[8] |
Duthie SJ. Folic acid deficiency and cancer: mechanisms of DNA instability[J]. Br Med Bull, 1999, 55(3):578-592.
|
[9] |
Freudenheim JL, Graham S, Marshall JR, et al. Folate intake and carcinogenesis of the colon and rectum[J]. Int J Epidemiol, 1991, 20(2):368-374.
|
[10] |
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7484):559-563.
|
[11] |
Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes[J]. Science, 2011, 334(6052):105-108.
|
[12] |
Krautkramer KA, Kreznar JH, Romano KA, et al. Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues[J]. Mol Cell, 2016, 64(5):982-992.
|
[13] |
Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease[J]. Gastroenterology, 2014, 146(6):1564-1572.
|
[14] |
Feng Q, Liang S, Jia H, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence[J]. Nat Commun, 2015, 6:6528.
|
[15] |
Sung JJ, Lau JY, Goh KL, et al. Increasing incidence of colorectal cancer in Asia: implications for screening[J]. Lancet Oncol, 2005, 6(11):871-876.
|
[16] |
Ohtani N. Microbiome and cancer[J]. Semin Immunopathol, 2015, 37(1):65-72.
|
[17] |
Zeng MY, Inohara N, and Nunez G.Mechanisms of inflammation-driven bacterial dysbiosis in the gut[J]. Mucosal Immunol, 2017, 10(1):18-26.
|
[18] |
Shanahan F. The colonic microbiota and colonic disease[J]. Curr Gastroenterol Rep, 2012, 14(5):446-452.
|
[19] |
Gagniere J, Raisch J, Veziant J, et al. Gut microbiota imbalance and colorectal cancer[J]. World J Gastroenterol, 2016, 22(2):501-518.
|
[20] |
Ahn J, Sinha R, Pei Z, et al. Human gut microbiome and risk for colorectal cancer[J]. J Natl Cancer Inst, 2013, 105(24):1907-1911.
|
[21] |
Sinha R, Ahn J, Sampson JN, et al. Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations[J]. PLoS One, 2016, 11(3):e0152126.
|
[22] |
Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment[J]. Cell Host Microbe, 2013, 14(2):207-215.
|
[23] |
McCoy AN, Araujo-Perez F, Azcarate-Peril A, et al.Fusobacterium is associated with colorectal adenomas[J]. PLoS One, 2013, 8(1):e53653.
|
[24] |
Zeller G, Tap J, Voigt AY, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer[J]. Mol Syst Biol, 2014, 10:766.
|
[25] |
Kohoutova D, Smajs D, Moravkova P, et al. Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia[J]. BMC Infect Dis, 2014, 14:733.
|
[26] |
Baxter NT, Koumpouras CC, Rogers MA, et al. DNA from fecal immunochemical test can replace stool for detection of colonic lesions using a microbiota-based model[J]. Microbiome, 2016, 4(1):59.
|
[27] |
Hale VL, Chen J, Johnson S, et al. Shifts in the fecal microbiota associated with adenomatous polyps[J]. Cancer Epidemiol Biomarkers Prev, 2016.
|
[28] |
Zackular JP, Rogers MA, Ruffin MTt, et al. The human gut microbiome as a screening tool for colorectal cancer[J]. Cancer Prev Res (Phila), 2014, 7(11):1112-1121.
|
[29] |
Liang JQ, Chiu J, Chen Y, et al. Fecal Bacteria Act as Novel Biomarkers for Non-Invasive Diagnosis of Colorectal Cancer[J]. Clin Cancer Res, 2017, 26(1):85-94.
|
[30] |
Ohigashi S, Sudo K, Kobayashi D, et al. Changes of the intestinal microbiota, short chain fatty acids, and fecal pH in patients with colorectal cancer[J]. Dig Dis Sci, 2013, 58(6):1717-1726.
|
[31] |
Kelly DL, Lyon DE, Yoon SL, et al. The Microbiome and Cancer: Implications for Oncology Nursing Science[J]. Cancer Nurs, 2016, 39(3):E56-62.
|
[32] |
Claudino WM, Quattrone A, Biganzoli L, et al. Metabolomics: available results, current research projects in breast cancer, and future applications[J]. J Clin Oncol, 2007, 25(19):2840-2846.
|
[33] |
Belcheva A, Irrazabal T, and Martin A. Gut microbial metabolism and colon cancer: can manipulations of the microbiota be useful in the management of gastrointestinal health?[J]. Bioessays, 2015, 37(4):403-412.
|
[34] |
Herbert Tilg MD. A Gut Feeling about Thrombosis[J]. N Engl J Med, 2016, 23;374(25):2494-2496.
|
[35] |
Xu R, Wang Q, and Li L. A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat[J]. BMC Genomics, 2015, 16(Suppl 7):S4.
|
[36] |
Lin Y, Ma C, Liu C, et al.NMR-based fecal metabolomics fingerprinting as predictors of earlier diagnosis in patients with colorectal cancer[J]. Oncotarget, 2016, 7(20):29454-29464.
|
[37] |
Brown DG, Rao S, Weir TL, et al. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool[J]. Cancer Metab, 2016, 4:11.
|
[38] |
Goedert JJ, Sampson JN, Moore SC, et al. Fecal metabolomics: assay performance and association with colorectal cancer[J]. Carcinogenesis, 2014, 35(9):2089-2096.
|
[39] |
Phua LC, Koh PK, Cheah PY, et al. Global gas chromatography/time-of-flight mass spectrometry (GC/TOFMS)-based metabonomic profiling of lyophilized human feces[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2013, 937:103-113.
|
[40] |
Metallo CM. Expanding the reach of cancer metabolomics[J]. Cancer Prev Res (Phila), 2012, 5(12):1337-1340.
|
[41] |
Monleon D, Morales JM, Barrasa A, et al. Metabolite profiling of fecal water extracts from human colorectal cancer[J]. NMR Biomed, 2009, 22(3):342-348.
|
[42] |
Qiu Y, Cai G, Su M, et al. Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS[J]. J Proteome Res, 2009, 8(10):4844-4850.
|
[43] |
Tan B, Qiu Y, Zou X, et al. Metabonomics identifies serum metabolite markers of colorectal cancer[J]. J Proteome Res, 2013, 12(6):3000-3009.
|
[44] |
Kuhn T, Floegel A, Sookthai D, et al. Higher plasma levels of lysophosphatidylcholine 18: 0 are related to a lower risk of common cancers in a prospective metabolomics study[J]. BMC Med, 2016, 14:13.
|
[45] |
Ritchie SA, Ahiahonu PW, Jayasinghe D, et al. Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection[J]. BMC Med, 2010, 8:13.
|
[46] |
Farshidfar F, Weljie AM, Kopciuk KA, et al. A validated metabolomic signature for colorectal cancer: exploration of the clinical value of metabolomics[J]. Br J Cancer, 2016, 115(7):848-857.
|
[47] |
Zhu J, Djukovic D, Deng L, et al. Targeted serum metabolite profiling and sequential metabolite ratio analysis for colorectal cancer progression monitoring[J]. Anal Bioanal Chem, 2015, 407(26):7857-7863.
|
[48] |
Ma Y, Zhang P, Wang F, et al.An integrated proteomics and metabolomics approach for defining oncofetal biomarkers in the colorectal cancer[J]. Ann Surg, 2012, 255(4):720-730.
|
[49] |
Uchiyama K, Yagi N, Mizushima K, et al. Serum metabolomics analysis for early detection of colorectal cancer[J]. J Gastroenterol, 2017, 52(6):677-694.
|
[50] |
Bertini I, Cacciatore S, Jensen BV, et al. Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer[J]. Cancer Res, 2012, 72(1):356-364.
|
[51] |
Ritchie SA, Tonita J, Alvi R, et al. Low-serum GTA-446 anti-inflammatory fatty acid levels as a new risk factor for colon cancer[J]. Int J Cancer, 2013, 132(2):355-362.
|
[52] |
Baxter NT, Ruffin MTt, Rogers MA, et al. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions[J]. Genome Med, 2016, 8(1):37.
|
[53] |
Watt E, Gemmell MR, Berry S, et al.Extending colonic mucosal microbiome analysis-assessment of colonic lavage as a proxy for endoscopic colonic biopsies[J]. Microbiome, 2016, 4(1):61.
|