切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2017, Vol. 06 ›› Issue (05) : 421 -426. doi: 10.3877/cma.j.issn.2095-3224.2017.05.015

所属专题: 文献

综述

肠道菌群及其代谢产物在结直肠癌中的研究进展
孔程1, 高仁元1, 黄林生1, 张鹏1, 秦环龙1,()   
  1. 1. 200072 上海,同济大学附属第十人民医院普外科;同济大学医学院肠道疾病研究所
  • 收稿日期:2017-01-02 出版日期:2017-10-25
  • 通信作者: 秦环龙
  • 基金资助:
    国家自然科学基金(No.81230057;No.81472262;No.81302066); 上海新兴前沿技术联合攻关项目(No.SHDC12012106)

Research progression of gut microbiota and its metabolites in colorectal cancer

Cheng Kong1, Renyuan Gao1, Linsheng Huang1, Peng Zhang1, Huanlong Qin1,()   

  1. 1. Department of GI Surgery, Shanghai Tenth People′s Hospital Affiliated to Tongji University; Research Institute for Intestinal Diseases of Tongji University School of Medicine, Shanghai 200072, China
  • Received:2017-01-02 Published:2017-10-25
  • Corresponding author: Huanlong Qin
  • About author:
    Corresponding author: Qin Huanlong, Email:
引用本文:

孔程, 高仁元, 黄林生, 张鹏, 秦环龙. 肠道菌群及其代谢产物在结直肠癌中的研究进展[J]. 中华结直肠疾病电子杂志, 2017, 06(05): 421-426.

Cheng Kong, Renyuan Gao, Linsheng Huang, Peng Zhang, Huanlong Qin. Research progression of gut microbiota and its metabolites in colorectal cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2017, 06(05): 421-426.

理解肠道微生态和代谢的改变,鉴定可靠的标志物对结直肠癌早期筛查和早期诊断至关重要。近期的研究发现,肠道菌群及其代谢产物形成的多样化和复杂的肠道生态环境深刻地影响肠内稳态和疾病状态。本文主要介绍了结直肠癌患者肠道菌群及其代谢产物的研究,并集中评述了它们用于癌症早期诊断的最新进展。

Understanding of intestinal micro-ecological and metabolic changes, identification of reliable markers of early colorectal cancer screening and early diagnosis is essential. Recent studies have found that gut microbiota and its metabolites formed a variety of complex intestinal ecological environment which profoundly affect the intestinal stability and disease state. This review focuses on the study of gut microbiota and its metabolites in colorectal cancer patients, and reviews the recent progress of then for the early diagnosis of cancer.

表1 结直肠癌患者血液和粪便代谢物改变
研究者 年份 CRC患者数 健康对照数 样本类型 分析平台 结直肠癌中升高 结直肠癌中下降 参考文献
Farshidfar, F. 2016 320 254 血清 GC-MS 3-羟基丁酸、2-羟基丁酸、乙二醇、乳酸、硬脂酸、苯基丙氨酸、异亮氨酸、柠檬酸、赖氨酸、甘氨酸 苏糖酸、胱氨酸、树胶醛糖、丙二酸、壬烷、甘油 [46]
Kuhn, T. 2016 163 774 血清 liquid FIA-MS/MS和LC-MS/MS 磷脂胆碱 甘氨酸、丝氨酸、溶血磷脂胆碱 [44]
Uchiyama, K. 2016 56 60 血清 CE-TOFMS 3-羟基丁酸 异戊酸、鸟氨酸、苯甲酸、组氨酸、赖氨酸、色氨酸 [49]
Zhu, J. 2015 20 - 血清 LC-MS/MS 琥珀酸、N2,N2-二甲基鸟苷、腺嘌呤、柠康酸、1-甲基鸟苷 / [47]
Tan, B. 2013 101 102 血清 GC-TOFMS和UPLC-QTOFMS 3-羟基丁酸、2-酮丁酸、四氢孕三烯酮 5-羟色胺、色氨酸、延胡索酸盐、吲哚丙烯酸、溶血磷脂酰胆碱 [43]
Ma, Y. 2012 30 - 血清 GC-MS 3-羟基丁酸 缬氨酸、苏氨酸、脱氧葡萄糖、甘氨酸、核糖醇 [48]
Bertini, I. 2012 153 139 血清 1H-NMR 3-羟基丁酸乙酯、甲酸、乙酸、甘油、苯丙氨酸、脯氨酸、脂质、糖蛋白 乳酸、丙酮酸、柠檬酸、丙氨酸、酪氨酸、缬氨酸、肌酸、谷氨酰胺 [50]
Ritchie, S. A. 2010 222 220 血清 FTICR-MS, LC-MS, NMR / 羟基化多不饱和超长链脂肪酸 [51]
Qiu, Y. 2009 64 65 血清 GC-TOFMS和UPLC-QTOFMS 丙酮酸盐和乳酸 酪氨酸、色氨酸、尿苷 [42]
Lin, Y. 2016 68 32 粪便 1H-NMR 琥珀酸盐、脯氨酸、丙氨酸、二甲基甘氨酸、缬氨酸、谷氨酸、亮氨酸、异亮氨酸、乳酸 乙酸盐、丁酸盐、丙酸盐、葡萄糖、谷氨酰胺 [36]
Brown, D. G. 2016 13 - 粪便 GC-MS和UPLC-MS/MS 同量异位素:甜菜碱醛、N-甲基二乙醇胺、腺苷酸琥珀酸盐 葡萄糖-6-磷酸、果糖-6-磷酸 [37]
Goedert, J. J. 2014 48 102 粪便 HPLC-GC/MS-MS 对羟基苯甲醛、扁桃酸盐、棕榈酰鞘磷脂 对氨基苯甲酸、二氢谷甾醇、蝶呤、α-生育酚、γ-生育酚、脱氢肉碱、N-2-糠酰-甘氨酸、亚油酸盐 [38]
Phua, L. C. 2013 11 10 粪便 GC/TOFMS / 烟酸、果糖、亚油酸 [39]
Monleon, D. 2009 21 11 粪便 NMR 亮氨酸、脯氨酸、半胱氨酸 乙酸盐、丁酸盐 [41]
[1]
Svensson T, Yamaji T, Budhathoki S, et al. Alcohol consumption, genetic variants in the alcohol- and folate metabolic pathways and colorectal cancer risk: the JPHC Study[J]. Sci Rep, 2016, 6:36607.
[2]
Tuan J, Chen YX. Dietary and Lifestyle Factors Associated with Colorectal Cancer Risk and Interactions with Microbiota: Fiber, Red or Processed Meat and Alcoholic Drinks[J]. Gastrointest Tumors, 2016, 3(1):17-24.
[3]
Yang C, Wang X, Huang CH, et al. Passive Smoking and Risk of Colorectal Cancer: A Meta-analysis of Observational Studies[J]. Asia Pac J Public Health, 2016, 28(5):394-403.
[4]
Goss PE, Strasser-Weippl K, Lee-Bychkovsky BL, et al.Challenges to effective cancer control in China, India, and Russia[J]. Lancet Oncol, 2014, 15(5):489-538.
[5]
Varghese C and Shin HR, Strengthening cancer control in China[J]. Lancet Oncol, 2014, 15(5):484-485.
[6]
Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis[J]. Nat Rev Cancer, 2007, 7(8):599-612.
[7]
Halsted CH, Villanueva JA, Devlin AM, et al., Metabolic interactions of alcohol and folate[J]. J Nutr, 2002, 132(8 Suppl):2367S-2372S.
[8]
Duthie SJ. Folic acid deficiency and cancer: mechanisms of DNA instability[J]. Br Med Bull, 1999, 55(3):578-592.
[9]
Freudenheim JL, Graham S, Marshall JR, et al. Folate intake and carcinogenesis of the colon and rectum[J]. Int J Epidemiol, 1991, 20(2):368-374.
[10]
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7484):559-563.
[11]
Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes[J]. Science, 2011, 334(6052):105-108.
[12]
Krautkramer KA, Kreznar JH, Romano KA, et al. Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues[J]. Mol Cell, 2016, 64(5):982-992.
[13]
Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease[J]. Gastroenterology, 2014, 146(6):1564-1572.
[14]
Feng Q, Liang S, Jia H, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence[J]. Nat Commun, 2015, 6:6528.
[15]
Sung JJ, Lau JY, Goh KL, et al. Increasing incidence of colorectal cancer in Asia: implications for screening[J]. Lancet Oncol, 2005, 6(11):871-876.
[16]
Ohtani N. Microbiome and cancer[J]. Semin Immunopathol, 2015, 37(1):65-72.
[17]
Zeng MY, Inohara N, and Nunez G.Mechanisms of inflammation-driven bacterial dysbiosis in the gut[J]. Mucosal Immunol, 2017, 10(1):18-26.
[18]
Shanahan F. The colonic microbiota and colonic disease[J]. Curr Gastroenterol Rep, 2012, 14(5):446-452.
[19]
Gagniere J, Raisch J, Veziant J, et al. Gut microbiota imbalance and colorectal cancer[J]. World J Gastroenterol, 2016, 22(2):501-518.
[20]
Ahn J, Sinha R, Pei Z, et al. Human gut microbiome and risk for colorectal cancer[J]. J Natl Cancer Inst, 2013, 105(24):1907-1911.
[21]
Sinha R, Ahn J, Sampson JN, et al. Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations[J]. PLoS One, 2016, 11(3):e0152126.
[22]
Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment[J]. Cell Host Microbe, 2013, 14(2):207-215.
[23]
McCoy AN, Araujo-Perez F, Azcarate-Peril A, et al.Fusobacterium is associated with colorectal adenomas[J]. PLoS One, 2013, 8(1):e53653.
[24]
Zeller G, Tap J, Voigt AY, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer[J]. Mol Syst Biol, 2014, 10:766.
[25]
Kohoutova D, Smajs D, Moravkova P, et al. Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia[J]. BMC Infect Dis, 2014, 14:733.
[26]
Baxter NT, Koumpouras CC, Rogers MA, et al. DNA from fecal immunochemical test can replace stool for detection of colonic lesions using a microbiota-based model[J]. Microbiome, 2016, 4(1):59.
[27]
Hale VL, Chen J, Johnson S, et al. Shifts in the fecal microbiota associated with adenomatous polyps[J]. Cancer Epidemiol Biomarkers Prev, 2016.
[28]
Zackular JP, Rogers MA, Ruffin MTt, et al. The human gut microbiome as a screening tool for colorectal cancer[J]. Cancer Prev Res (Phila), 2014, 7(11):1112-1121.
[29]
Liang JQ, Chiu J, Chen Y, et al. Fecal Bacteria Act as Novel Biomarkers for Non-Invasive Diagnosis of Colorectal Cancer[J]. Clin Cancer Res, 2017, 26(1):85-94.
[30]
Ohigashi S, Sudo K, Kobayashi D, et al. Changes of the intestinal microbiota, short chain fatty acids, and fecal pH in patients with colorectal cancer[J]. Dig Dis Sci, 2013, 58(6):1717-1726.
[31]
Kelly DL, Lyon DE, Yoon SL, et al. The Microbiome and Cancer: Implications for Oncology Nursing Science[J]. Cancer Nurs, 2016, 39(3):E56-62.
[32]
Claudino WM, Quattrone A, Biganzoli L, et al. Metabolomics: available results, current research projects in breast cancer, and future applications[J]. J Clin Oncol, 2007, 25(19):2840-2846.
[33]
Belcheva A, Irrazabal T, and Martin A. Gut microbial metabolism and colon cancer: can manipulations of the microbiota be useful in the management of gastrointestinal health?[J]. Bioessays, 2015, 37(4):403-412.
[34]
Herbert Tilg MD. A Gut Feeling about Thrombosis[J]. N Engl J Med, 2016, 23;374(25):2494-2496.
[35]
Xu R, Wang Q, and Li L. A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat[J]. BMC Genomics, 2015, 16(Suppl 7):S4.
[36]
Lin Y, Ma C, Liu C, et al.NMR-based fecal metabolomics fingerprinting as predictors of earlier diagnosis in patients with colorectal cancer[J]. Oncotarget, 2016, 7(20):29454-29464.
[37]
Brown DG, Rao S, Weir TL, et al. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool[J]. Cancer Metab, 2016, 4:11.
[38]
Goedert JJ, Sampson JN, Moore SC, et al. Fecal metabolomics: assay performance and association with colorectal cancer[J]. Carcinogenesis, 2014, 35(9):2089-2096.
[39]
Phua LC, Koh PK, Cheah PY, et al. Global gas chromatography/time-of-flight mass spectrometry (GC/TOFMS)-based metabonomic profiling of lyophilized human feces[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2013, 937:103-113.
[40]
Metallo CM. Expanding the reach of cancer metabolomics[J]. Cancer Prev Res (Phila), 2012, 5(12):1337-1340.
[41]
Monleon D, Morales JM, Barrasa A, et al. Metabolite profiling of fecal water extracts from human colorectal cancer[J]. NMR Biomed, 2009, 22(3):342-348.
[42]
Qiu Y, Cai G, Su M, et al. Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS[J]. J Proteome Res, 2009, 8(10):4844-4850.
[43]
Tan B, Qiu Y, Zou X, et al. Metabonomics identifies serum metabolite markers of colorectal cancer[J]. J Proteome Res, 2013, 12(6):3000-3009.
[44]
Kuhn T, Floegel A, Sookthai D, et al. Higher plasma levels of lysophosphatidylcholine 18: 0 are related to a lower risk of common cancers in a prospective metabolomics study[J]. BMC Med, 2016, 14:13.
[45]
Ritchie SA, Ahiahonu PW, Jayasinghe D, et al. Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection[J]. BMC Med, 2010, 8:13.
[46]
Farshidfar F, Weljie AM, Kopciuk KA, et al. A validated metabolomic signature for colorectal cancer: exploration of the clinical value of metabolomics[J]. Br J Cancer, 2016, 115(7):848-857.
[47]
Zhu J, Djukovic D, Deng L, et al. Targeted serum metabolite profiling and sequential metabolite ratio analysis for colorectal cancer progression monitoring[J]. Anal Bioanal Chem, 2015, 407(26):7857-7863.
[48]
Ma Y, Zhang P, Wang F, et al.An integrated proteomics and metabolomics approach for defining oncofetal biomarkers in the colorectal cancer[J]. Ann Surg, 2012, 255(4):720-730.
[49]
Uchiyama K, Yagi N, Mizushima K, et al. Serum metabolomics analysis for early detection of colorectal cancer[J]. J Gastroenterol, 2017, 52(6):677-694.
[50]
Bertini I, Cacciatore S, Jensen BV, et al. Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer[J]. Cancer Res, 2012, 72(1):356-364.
[51]
Ritchie SA, Tonita J, Alvi R, et al. Low-serum GTA-446 anti-inflammatory fatty acid levels as a new risk factor for colon cancer[J]. Int J Cancer, 2013, 132(2):355-362.
[52]
Baxter NT, Ruffin MTt, Rogers MA, et al. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions[J]. Genome Med, 2016, 8(1):37.
[53]
Watt E, Gemmell MR, Berry S, et al.Extending colonic mucosal microbiome analysis-assessment of colonic lavage as a proxy for endoscopic colonic biopsies[J]. Microbiome, 2016, 4(1):61.
[1] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[2] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[5] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[6] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[7] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[8] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[9] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[10] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[11] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[12] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[13] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[14] 王磊, 李梦, 孙文利, 刘瑞, 王红春, 卢光泽, 赵颖, 郭进艳, 刘红星. 液相色谱质谱法对急性白血病患者血浆代谢组学的特征分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 850-857.
[15] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
阅读次数
全文


摘要