切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2016, Vol. 05 ›› Issue (04) : 287 -291. doi: 10.3877/cma.j.issn.2095-3224.2016.04.002

所属专题: 文献

述评

肿瘤放射治疗技术进展
田源1, 张红志1,()   
  1. 1. 100021 北京,国家癌症中心/中国医学科学院北京协和医学院肿瘤医院放疗科
  • 收稿日期:2016-06-06 出版日期:2016-08-25
  • 通信作者: 张红志

Advances of technology in radiation oncology

Yuan Tian1, Hongzhi Zhang1,()   

  1. 1. Department of Radiotherapy, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
  • Received:2016-06-06 Published:2016-08-25
  • Corresponding author: Hongzhi Zhang
  • About author:
    Corresponding author: Zhang Hongzhi, Email:
引用本文:

田源, 张红志. 肿瘤放射治疗技术进展[J/OL]. 中华结直肠疾病电子杂志, 2016, 05(04): 287-291.

Yuan Tian, Hongzhi Zhang. Advances of technology in radiation oncology[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2016, 05(04): 287-291.

20世纪90年代以来,随着放射物理技术、计算机技术和医学影像技术的迅猛发展,放射治疗技术已取得了长足进展。三维适形放疗、调强放疗、容积旋转调强放疗和螺旋断层放疗等先进放射治疗技术层出不穷,大幅提高了肿瘤靶区的物理适形度和治疗效率。但在肿瘤的放射治疗临床实践中仍然存在若干急需解决的问题。近年来,以生物引导放射治疗、图像引导放射治疗、剂量引导放射治疗和放射影像组学为代表的新技术,推动着放射治疗向以"精确定位"、"精确计划"和"精确治疗"为终极目标的"三精放疗"时代迈进。

Since the 1990s, with the rapid development of radiation physics, computer technology and medical imaging technology, radiotherapy techniques have made considerable progress. New technologies, such as three-dimensional conformal radiotherapy (3D-CRT), intensity modulated radiation therapy (IMRT), volumetric modulated radiation therapy (VMAT) and tomo therapy substantially increase physical conformalty of tumor target and treatment efficiency. But in clinical practice of radiation oncology, there are still a number of urgent problems. In recent years, advances in radiotherapy technology, for example, biology guided radiation therapy, imaging guided radiation therapy, dose guided radiation therapy and radiomics, improve the accuracy of positioning, planning, delivery and prognosis.

[1]
欧阳伟炜,卢冰,唐劲天.肿瘤放射治疗研究进展[J].科技导报, 2014, 32(26):47-51.
[2]
Guo B, Li J, Wang W, et al. Dosimetric impact of tumor bed delineation variability based on 4DCT scan for external-beam partial breast irradiation[J]. Int J Clin Exp Med, 2015, 8(11):21579-21585.
[3]
Chauhan D, Rawat S, Sharma M.K, et al. Improving the accuracy of target volume delineation by combined use of computed tomography, magnetic resonance imaging and positron emission tomography in head and neck carcinomas[J]. J Cancer Res Ther, 2015, 11(4):746-751.
[4]
Awan M.J, Siddiqui F, Schwartz D, et al. Application of positron emission tomography/computed tomography in radiation treatment planning for head and neck cancers[J]. World J Radiol, 2015, 7(11):382-393.
[5]
Nguyen V.N, Ellerbusch D.C, Cetnar A.J, et al. Implementation of an in-house visual feedback system for motion management during radiation therapy[J]. J Appl Clin Med Phys, 2016, 17(1):5817.
[6]
Wang X, Yu M, Wang J, et al. An assessment of interfractional bladder, rectum and vagina motion in postoperative cervical cancer based on daily cone-beam computed tomography[J]. Mol Clin Oncol, 2016, 4(2):271-277.
[7]
Huijskens SC, van Dijk IW, de Jong R, et al. Quantification of renal and diaphragmatic interfractional motion in pediatric image-guided radiation therapy: A multicenter study[J]. Radiother Oncol, 2015, 117(3):425-431.
[8]
Eom K.Y, Chie E.K, Kim K, et al. Pilot study on interfractional and intrafractional movements using surface infrared markers and EPID for patients with rectal cancer treated in the prone position[J]. Br J Radiol, 2015, 88(1052):20150144.
[9]
Wang J.Z, Li J.B, Wang W, et al. Changes in tumour volume and motion during radiotherapy for thoracic oesophageal cancer[J]. Radiother Oncol, 2015, 114(2):201-205.
[10]
Jin H, Keeling V.P, Ali I, et al. Dosimetric effects of positioning shifts using 6D-frameless stereotactic Brainlab system in hypofractionated intracranial radiotherapy[J]. J Appl Clin Med Phys, 2016, 17(1):5682.
[11]
Yang Y, Cao M, Kaprealian T, et al. Accuracy of UTE-MRI-based patient setup for brain cancer radiation therapy[J]. Med Phys, 2016, 43(1):262.
[12]
Zhang M, Zhang Q, Gan H, et al. Setup uncertainties in linear accelerator based stereotactic radiosurgery and a derivation of the corresponding setup margin for treatment planning[J]. Phys Med, 2016, 32(2):379-385.
[13]
Sumida I, Yamaguchi H, Das IJ, et al. Intensity-modulated radiation therapy dose verification using fluence and portal imaging device[J]. J Appl Clin Med Phys, 2016, 17(1):5899.
[14]
McCowan, P.M, McCurdy B.M..Frame average optimization of cine-mode EPID images used for routine clinical in vivo patient dose verification of VMAT deliveries[J]. Med Phys, 2016, 43(1):254.
[15]
Lee Y.K, Kim A.T, Zhao P, et al. Practical dose delivery verification of craniospinal IMRT[J]. J Appl Clin Med Phys, 2015, 16(6):5481.
[16]
Zhu L, Zhu L, Shi H, et al. Evaluating early response of cervical cancer under concurrent chemo-radiotherapy by intravoxel incoherent motion MR imaging[J]. BMC Cancer, 2015, 16(1):79.
[17]
Mabuchi S, Sasano T, Kuroda H, et al. Real-time tissue sonoelastography for early response monitoring in cervical cancer patients treated with definitive chemoradiotherapy: preliminary results[J]. J Med Ultrason (2001), 2015, 42(3):379-385.
[18]
Yang C, Lee D.H, Mangraviti A, et al. Quantitative correlational study of microbubble-enhanced ultrasound imaging and magnetic resonance imaging of glioma and early response to radiotherapy in a rat model[J]. Med Phys, 2015, 42(8):4762-4772.
[19]
Würschmidt F, Petersen C, Wahl A, et al. [18F] fluoroethylcholine-PET/CT imaging for radiation treatment planning of recurrent and primary prostate cancer with dose escalation to PET/CT-positive lymph nodes[J]. Radiat Oncol, 2011, 6:44.
[20]
Stewart, R.D, Li X.A..BGRT: biologically guided radiation therapy-the future is fast approaching[J]! Med Phys, 2007, 34(10):3739-3751.
[21]
Bentzen, S.M. Radiation therapy: intensity modulated, image guided, biologically optimized and evidence based[J]. Radiother Oncol, 2005, 77(3):227-230.
[22]
Ye J.C, Qureshi M.M, Clancy P, et al. Daily patient setup error in prostate image guided radiation therapy with fiducial-based kilovoltage onboard imaging and conebeam computed tomography[J]. Quant Imaging Med Surg, 2015, 5(5):665-672.
[23]
张希梅,李明辉,曹建忠,等.鼻咽癌调强放疗中靶区剂量变化规律研究[J]. 中华放射肿瘤学杂志, 2010, 19(3):197-200.
[24]
Stanley, D.N, Papanikolaou N., GutierrezA.N., Development of image quality assurance measures of the ExacTrac localization system using commercially available image evaluation software and hardware for image-guided radiotherapy[J]. J Appl Clin Med Phys, 2014, 15(6):4877.
[25]
Rozario T, Bereg S, Yan Y, et al. An accurate algorithm to match imperfectly matched images for lung tumor detection without markers[J]. J Appl Clin Med Phys, 2015, 16(3):5200.
[26]
Franz A.M, Schmitt D, Seitel A, et al. Standardized accuracy assessment of the calypso wireless transponder tracking system[J]. Phys Med Biol, 2014, 59(22):6797-6810.
[27]
Freislederer P, Reiner M, Hoischen W, et al. Characteristics of gated treatment using an optical surface imaging and gating system on an Elekta linac[J]. Radiat Oncol, 2015, 10:68.
[28]
Mutic, S, J.F. Dempsey.The ViewRay system: magnetic resonance-guided and controlled radiotherapy[J]. Semin Radiat Oncol, 2014, 24(3):196-199.
[29]
Lagendijk J.J, Raaymakers B.W, Raaijmakers A.J, et al. MRI/linac integration. Radiother Oncol, 2008, 86(1):25-29.
[30]
Royer P, Marchesi V, Rousseau V, et al. Evaluation of transit in vivo dosimetry using portal imaging and comparison with measurements using diodes[J]. Cancer Radiother, 2014, 18(3):183-190.
[31]
Narayanasamy G, Zalman T, Ha C.S, et al. Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance[J]. J Appl Clin Med Phys, 2015,16(3):5427.
[32]
Lordick, F. The role of PET in predicting response to chemotherapy in oesophago-gastric cancer[J]. Acta Gastroenterol Belg, 2011, 74(4):530-535.
[33]
Gillies, R.J, Kinahan P.E., Hricak H.. Radiomics: Images Are More than Pictures, They Are Data[J]. Radiology, 2016, 278(2):563-577.
[34]
Coroller T.P, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma[J]. Radiother Oncol, 2015,114(3):345-350.
[35]
Mattonen S.A, Palma D.A, Johnson C, et al. Detection of Local Cancer Recurrence After Stereotactic Ablative Radiation Therapy for Lung Cancer: Physician Performance Versus Radiomic Assessment[J]. Int J Radiat Oncol Biol Phys, 2016, 94(5):1121-1128.
[36]
Yang C, Dalah E, Tai A, et al. CT Number Changes as a Supplemental Prognostic Surrogate for Assessing Radiation Treatment Response of Lung Tumor[C]. ASTRO, 2015.
[37]
Cui Y, Song J, Pollom E, et al. Radiomic Analysis of FDG-PET Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated with SBRT[C]. ASTRO, 2015.
[38]
YeungT.P.C., RodriguesG., LagerwaardF., et al. Prediction of Stereotactic Radiosurgery Brain Metastasis Lesion Control Using Radiomic Features[C]. ASTRO, 2015.
[39]
Mattonen S.A, Tetar S, Palma D.A, et al. Imaging texture analysis for automated prediction of lung cancer recurrence after stereotactic radiotherapy[J]. Med Imaging, 2015, 2(4):041010.
[1] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[2] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[3] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[4] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[5] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[6] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[7] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[8] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[9] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[10] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[11] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[12] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[13] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[14] 刘柏隆, 周祥福. 压力性尿失禁阶梯治疗的项目介绍[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 125-125.
[15] 刘柏隆. 女性压力性尿失禁阶梯治疗之手术治疗方案选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 126-126.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?