切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2016, Vol. 05 ›› Issue (04) : 287 -291. doi: 10.3877/cma.j.issn.2095-3224.2016.04.002

所属专题: 文献

述评

肿瘤放射治疗技术进展
田源1, 张红志1,()   
  1. 1. 100021 北京,国家癌症中心/中国医学科学院北京协和医学院肿瘤医院放疗科
  • 收稿日期:2016-06-06 出版日期:2016-08-25
  • 通信作者: 张红志

Advances of technology in radiation oncology

Yuan Tian1, Hongzhi Zhang1,()   

  1. 1. Department of Radiotherapy, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
  • Received:2016-06-06 Published:2016-08-25
  • Corresponding author: Hongzhi Zhang
  • About author:
    Corresponding author: Zhang Hongzhi, Email:
引用本文:

田源, 张红志. 肿瘤放射治疗技术进展[J]. 中华结直肠疾病电子杂志, 2016, 05(04): 287-291.

Yuan Tian, Hongzhi Zhang. Advances of technology in radiation oncology[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2016, 05(04): 287-291.

20世纪90年代以来,随着放射物理技术、计算机技术和医学影像技术的迅猛发展,放射治疗技术已取得了长足进展。三维适形放疗、调强放疗、容积旋转调强放疗和螺旋断层放疗等先进放射治疗技术层出不穷,大幅提高了肿瘤靶区的物理适形度和治疗效率。但在肿瘤的放射治疗临床实践中仍然存在若干急需解决的问题。近年来,以生物引导放射治疗、图像引导放射治疗、剂量引导放射治疗和放射影像组学为代表的新技术,推动着放射治疗向以"精确定位"、"精确计划"和"精确治疗"为终极目标的"三精放疗"时代迈进。

Since the 1990s, with the rapid development of radiation physics, computer technology and medical imaging technology, radiotherapy techniques have made considerable progress. New technologies, such as three-dimensional conformal radiotherapy (3D-CRT), intensity modulated radiation therapy (IMRT), volumetric modulated radiation therapy (VMAT) and tomo therapy substantially increase physical conformalty of tumor target and treatment efficiency. But in clinical practice of radiation oncology, there are still a number of urgent problems. In recent years, advances in radiotherapy technology, for example, biology guided radiation therapy, imaging guided radiation therapy, dose guided radiation therapy and radiomics, improve the accuracy of positioning, planning, delivery and prognosis.

[1]
欧阳伟炜,卢冰,唐劲天.肿瘤放射治疗研究进展[J].科技导报, 2014, 32(26):47-51.
[2]
Guo B, Li J, Wang W, et al. Dosimetric impact of tumor bed delineation variability based on 4DCT scan for external-beam partial breast irradiation[J]. Int J Clin Exp Med, 2015, 8(11):21579-21585.
[3]
Chauhan D, Rawat S, Sharma M.K, et al. Improving the accuracy of target volume delineation by combined use of computed tomography, magnetic resonance imaging and positron emission tomography in head and neck carcinomas[J]. J Cancer Res Ther, 2015, 11(4):746-751.
[4]
Awan M.J, Siddiqui F, Schwartz D, et al. Application of positron emission tomography/computed tomography in radiation treatment planning for head and neck cancers[J]. World J Radiol, 2015, 7(11):382-393.
[5]
Nguyen V.N, Ellerbusch D.C, Cetnar A.J, et al. Implementation of an in-house visual feedback system for motion management during radiation therapy[J]. J Appl Clin Med Phys, 2016, 17(1):5817.
[6]
Wang X, Yu M, Wang J, et al. An assessment of interfractional bladder, rectum and vagina motion in postoperative cervical cancer based on daily cone-beam computed tomography[J]. Mol Clin Oncol, 2016, 4(2):271-277.
[7]
Huijskens SC, van Dijk IW, de Jong R, et al. Quantification of renal and diaphragmatic interfractional motion in pediatric image-guided radiation therapy: A multicenter study[J]. Radiother Oncol, 2015, 117(3):425-431.
[8]
Eom K.Y, Chie E.K, Kim K, et al. Pilot study on interfractional and intrafractional movements using surface infrared markers and EPID for patients with rectal cancer treated in the prone position[J]. Br J Radiol, 2015, 88(1052):20150144.
[9]
Wang J.Z, Li J.B, Wang W, et al. Changes in tumour volume and motion during radiotherapy for thoracic oesophageal cancer[J]. Radiother Oncol, 2015, 114(2):201-205.
[10]
Jin H, Keeling V.P, Ali I, et al. Dosimetric effects of positioning shifts using 6D-frameless stereotactic Brainlab system in hypofractionated intracranial radiotherapy[J]. J Appl Clin Med Phys, 2016, 17(1):5682.
[11]
Yang Y, Cao M, Kaprealian T, et al. Accuracy of UTE-MRI-based patient setup for brain cancer radiation therapy[J]. Med Phys, 2016, 43(1):262.
[12]
Zhang M, Zhang Q, Gan H, et al. Setup uncertainties in linear accelerator based stereotactic radiosurgery and a derivation of the corresponding setup margin for treatment planning[J]. Phys Med, 2016, 32(2):379-385.
[13]
Sumida I, Yamaguchi H, Das IJ, et al. Intensity-modulated radiation therapy dose verification using fluence and portal imaging device[J]. J Appl Clin Med Phys, 2016, 17(1):5899.
[14]
McCowan, P.M, McCurdy B.M..Frame average optimization of cine-mode EPID images used for routine clinical in vivo patient dose verification of VMAT deliveries[J]. Med Phys, 2016, 43(1):254.
[15]
Lee Y.K, Kim A.T, Zhao P, et al. Practical dose delivery verification of craniospinal IMRT[J]. J Appl Clin Med Phys, 2015, 16(6):5481.
[16]
Zhu L, Zhu L, Shi H, et al. Evaluating early response of cervical cancer under concurrent chemo-radiotherapy by intravoxel incoherent motion MR imaging[J]. BMC Cancer, 2015, 16(1):79.
[17]
Mabuchi S, Sasano T, Kuroda H, et al. Real-time tissue sonoelastography for early response monitoring in cervical cancer patients treated with definitive chemoradiotherapy: preliminary results[J]. J Med Ultrason (2001), 2015, 42(3):379-385.
[18]
Yang C, Lee D.H, Mangraviti A, et al. Quantitative correlational study of microbubble-enhanced ultrasound imaging and magnetic resonance imaging of glioma and early response to radiotherapy in a rat model[J]. Med Phys, 2015, 42(8):4762-4772.
[19]
Würschmidt F, Petersen C, Wahl A, et al. [18F] fluoroethylcholine-PET/CT imaging for radiation treatment planning of recurrent and primary prostate cancer with dose escalation to PET/CT-positive lymph nodes[J]. Radiat Oncol, 2011, 6:44.
[20]
Stewart, R.D, Li X.A..BGRT: biologically guided radiation therapy-the future is fast approaching[J]! Med Phys, 2007, 34(10):3739-3751.
[21]
Bentzen, S.M. Radiation therapy: intensity modulated, image guided, biologically optimized and evidence based[J]. Radiother Oncol, 2005, 77(3):227-230.
[22]
Ye J.C, Qureshi M.M, Clancy P, et al. Daily patient setup error in prostate image guided radiation therapy with fiducial-based kilovoltage onboard imaging and conebeam computed tomography[J]. Quant Imaging Med Surg, 2015, 5(5):665-672.
[23]
张希梅,李明辉,曹建忠,等.鼻咽癌调强放疗中靶区剂量变化规律研究[J]. 中华放射肿瘤学杂志, 2010, 19(3):197-200.
[24]
Stanley, D.N, Papanikolaou N., GutierrezA.N., Development of image quality assurance measures of the ExacTrac localization system using commercially available image evaluation software and hardware for image-guided radiotherapy[J]. J Appl Clin Med Phys, 2014, 15(6):4877.
[25]
Rozario T, Bereg S, Yan Y, et al. An accurate algorithm to match imperfectly matched images for lung tumor detection without markers[J]. J Appl Clin Med Phys, 2015, 16(3):5200.
[26]
Franz A.M, Schmitt D, Seitel A, et al. Standardized accuracy assessment of the calypso wireless transponder tracking system[J]. Phys Med Biol, 2014, 59(22):6797-6810.
[27]
Freislederer P, Reiner M, Hoischen W, et al. Characteristics of gated treatment using an optical surface imaging and gating system on an Elekta linac[J]. Radiat Oncol, 2015, 10:68.
[28]
Mutic, S, J.F. Dempsey.The ViewRay system: magnetic resonance-guided and controlled radiotherapy[J]. Semin Radiat Oncol, 2014, 24(3):196-199.
[29]
Lagendijk J.J, Raaymakers B.W, Raaijmakers A.J, et al. MRI/linac integration. Radiother Oncol, 2008, 86(1):25-29.
[30]
Royer P, Marchesi V, Rousseau V, et al. Evaluation of transit in vivo dosimetry using portal imaging and comparison with measurements using diodes[J]. Cancer Radiother, 2014, 18(3):183-190.
[31]
Narayanasamy G, Zalman T, Ha C.S, et al. Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance[J]. J Appl Clin Med Phys, 2015,16(3):5427.
[32]
Lordick, F. The role of PET in predicting response to chemotherapy in oesophago-gastric cancer[J]. Acta Gastroenterol Belg, 2011, 74(4):530-535.
[33]
Gillies, R.J, Kinahan P.E., Hricak H.. Radiomics: Images Are More than Pictures, They Are Data[J]. Radiology, 2016, 278(2):563-577.
[34]
Coroller T.P, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma[J]. Radiother Oncol, 2015,114(3):345-350.
[35]
Mattonen S.A, Palma D.A, Johnson C, et al. Detection of Local Cancer Recurrence After Stereotactic Ablative Radiation Therapy for Lung Cancer: Physician Performance Versus Radiomic Assessment[J]. Int J Radiat Oncol Biol Phys, 2016, 94(5):1121-1128.
[36]
Yang C, Dalah E, Tai A, et al. CT Number Changes as a Supplemental Prognostic Surrogate for Assessing Radiation Treatment Response of Lung Tumor[C]. ASTRO, 2015.
[37]
Cui Y, Song J, Pollom E, et al. Radiomic Analysis of FDG-PET Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated with SBRT[C]. ASTRO, 2015.
[38]
YeungT.P.C., RodriguesG., LagerwaardF., et al. Prediction of Stereotactic Radiosurgery Brain Metastasis Lesion Control Using Radiomic Features[C]. ASTRO, 2015.
[39]
Mattonen S.A, Tetar S, Palma D.A, et al. Imaging texture analysis for automated prediction of lung cancer recurrence after stereotactic radiotherapy[J]. Med Imaging, 2015, 2(4):041010.
[1] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[4] 杜晓辉, 崔建新. 腹腔镜右半结肠癌D3根治术淋巴结清扫范围与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 5-8.
[5] 周岩冰, 刘晓东. 腹腔镜右半结肠癌D3根治术消化道吻合重建方式的选择[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 9-13.
[6] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[7] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[8] 张焱辉, 张蛟, 朱志贤. 留置肛管在中低位直肠癌新辅助放化疗后腹腔镜TME术中的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 25-28.
[9] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[10] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[11] 燕速, 霍博文, 徐惠宁. 4K荧光腹腔镜扩大右半结肠CME+D3根治术及No.206、No.204组淋巴结清扫术[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 14-14.
[12] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[13] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[14] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[15] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
阅读次数
全文


摘要