1 |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
|
2 |
Batlle E, Clevers H. Cancer stem cells revisited[J]. Nat Med, 2017, 23(10): 1124-1134.
|
3 |
Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells[J]. Science, 1977, 197(4302): 461-463.
|
4 |
Mackillop WJ, Ciampi A, Till JE, et al. A stem cell model of human tumor growth: implications for tumor cell clonogenic assays[J]. J Natl Cancer Inst, 1983, 70(1): 9-16.
|
5 |
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med, 1997, 3(7): 730-737.
|
6 |
O'Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature, 2007, 445(7123): 106-110.
|
7 |
Wahab SMR, Islam F, Gopalan V, et al. The identifications and clinical implications of cancer stem cells in colorectal cancer[J]. Clin Colorectal Cancer, 2017, 16(2): 93-102.
|
8 |
Zeuner A, Todaro M, Stassi G, et al. Colorectal cancer stem cells: from the crypt to the clinic[J]. Cell Stem Cell, 2014, 15(6): 692-705.
|
9 |
Huang EH, Hynes MJ, Zhang T, et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis[J]. Cancer Res, 2009, 69(8): 3382-3389.
|
10 |
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem, 2010, 79: 351-379.
|
11 |
Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer[J]. Biochim Biophys Acta, 2003, 1653(1): 1-24.
|
12 |
Yu Y, Kanwar SS, Patel BB, et al. MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells[J]. Carcinogenesis, 2012, 33(1): 68-76.
|
13 |
Hu JL, Wang W, Lan XL, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer[J]. Mol Cancer, 2019, 18(1): 91.
|
14 |
Chen HY, Lang YD, Lin HN, et al. miR-103/107 prolong Wnt/β-catenin signaling and colorectal cancer stemness by targeting Axin2[J]. Sci Rep, 2019, 9(1): 9687.
|
15 |
Hwang WL, Jiang JK, Yang SH, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells[J]. Nat Cell Biol, 2014, 16(3): 268-280.
|
16 |
Cai MH, Xu XG, Yan SL, et al. Regorafenib suppresses colon tumorigenesis and the generation of drug resistant cancer stem-like cells via modulation of miR-34a associated signaling[J]. J Exp Clin Cancer Res, 2018, 37(1): 151.
|
17 |
Li Y, Shao Y, Tong Y, et al. Nucleo-cytoplasmic shuttling of PAK4 modulates β-catenin intracellular translocation and signaling[J]. Biochim Biophys Acta, 2012, 1823(2): 465-475.
|
18 |
Yamada N, Noguchi S, Mori T, et al. Tumor-suppressive microRNA-145 targets catenin δ-1 to regulate Wnt/β-catenin signaling in human colon cancer cells[J]. Cancer Lett, 2013, 335(2): 332-342.
|
19 |
Ning Z, Wang A, Liang J, et al. USP22 promotes the G1/S phase transition by upregulating FoxM1 expression via β-catenin nuclear localization and is associated with poor prognosis in stage II pancreatic ductal adenocarcinoma[J]. Int J Oncol, 2014, 45(4): 1594-1608.
|
20 |
Jiang S, Miao D, Wang M, et al. MiR-30-5p suppresses cell chemoresistance and stemness in colorectal cancer through USP22/Wnt/β-catenin signaling axis[J]. J Cell Mol Med, 2019, 23(1): 630-640.
|
21 |
Mamoori A, Wahab R, Vider J, et al. The tumour suppressor effects and regulation of cancer stem cells by macrophage migration inhibitory factor targeted miR-451 in colon cancer[J]. Gene, 2019, 697: 165-174.
|
22 |
Castellone MD, Teramoto H, Williams BO, et al. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis[J]. Science, 2005, 310(5753): 1504-1510.
|
23 |
Bitarte N, Bandres E, Boni V, et al. MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells[J]. Stem Cells, 2011, 29(11): 1661-1671.
|
24 |
Ren J, Ding L, Zhang D, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19[J]. Theranostics, 2018, 8(14): 3932-3948.
|
25 |
van Es JH, van Gijn ME, Riccio O, et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells[J]. Nature, 2005, 435(7044): 959-963.
|
26 |
Taketo MM. Reflections on the spread of metastasis to cancer prevention[J]. Cancer Prev Res (Phila), 2011, 4(3): 324-328.
|
27 |
Bu P, Chen KY, Chen JH, et al. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells[J]. Cell Stem Cell, 2013, 12(5): 602-615.
|
28 |
Jin Y, Wang M, Hu H, et al. Overcoming stemness and chemoresistance in colorectal cancer through miR-195-5p-modulated inhibition of notch signaling[J]. Int J Biol Macromol, 2018, 117: 445-453.
|
29 |
Marotta LL, Almendro V, Marusyk A, et al. The JAK2/STAT3 signaling pathway is required for growth of CD44⁺CD24⁻ stem cell-like breast cancer cells in human tumors[J]. J Clin Invest, 2011, 121(7): 2723-2735.
|
30 |
Zhao C, Li H, Lin HJ, et al. Feedback activation of STAT3 as a cancer drug-resistance mechanism[J]. Trends Pharmacol Sci, 2016, 37(1): 47-61.
|
31 |
Hebenstreit D, Horejs-Hoeck J, Duschl A. JAK/STAT-dependent gene regulation by cytokines[J]. Drug News Perspect, 2005, 18(4): 243-249.
|
32 |
Ren D, Lin B, Zhang X, et al. Maintenance of cancer stemness by miR-196b-5p contributes to chemoresistance of colorectal cancer cells via activating STAT3 signaling pathway[J]. Oncotarget, 2017, 8(30): 49807-49823.
|
33 |
Park JK, Jung HY, Park SH, et al. Combination of PTEN and gamma-ionizing radiation enhances cell death and G(2)/M arrest through regulation of AKT activity and p21 induction in non-small-cell lung cancer cells[J]. Int J Radiat Oncol Biol Phys, 2008, 70(5): 1552-1560.
|
34 |
Frattini M, Saletti P, Romagnani E, et al. PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients[J]. Br J Cancer, 2007, 97(8): 1139-1145.
|
35 |
Zheng L, Zhang Y, Liu Y, et al. MiR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer[J]. J Transl Med, 2015, 13: 252.
|
36 |
Roy S, Yu Y, Padhye SB, et al. Difluorinated-curcumin (CDF) restores PTEN expression in colon cancer cells by down-regulating miR-21[J]. PLoS One, 2013, 8(7): e68543.
|
37 |
Yusra, Semba S, Yokozaki H. Biological significance of tumor budding at the invasive front of human colorectal carcinoma cells[J]. Int J Oncol, 2012, 41(1): 201-210.
|
38 |
Zubeldia IG, Bleau AM, Redrado M, et al. Epithelial to mesenchymal transition and cancer stem cell phenotypes leading to liver metastasis are abrogated by the novel TGFβ1-targeting peptides P17 and P144[J]. Exp Cell Res, 2013, 319(3): 12-22.
|
39 |
Ye J, Lei J, Fang Q, et al. miR-4666-3p and miR-329 synergistically suppress the stemness of colorectal cancer cells via targeting TGF-β/Smad pathway[J]. Front Oncol, 2019, 9: 1251.
|
40 |
Zhang J, Tam WL, Tong GQ, et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1[J]. Nat Cell Biol, 2006, 8(10): 1114-1123.
|
41 |
Chang S, Sun G, Zhang D, et al. MiR-3622a-3p acts as a tumor suppressor in colorectal cancer by reducing stemness features and EMT through targeting spalt-like transcription factor 4[J]. Cell Death Dis, 2020, 11(7): 592.
|
42 |
Whissell G, Montagni E, Martinelli P, et al. The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression[J]. Nat Cell Biol, 2014, 16(7): 695-707.
|
43 |
Lai HT, Tseng WK, Huang SW, et al. MicroRNA-203 diminishes the stemness of human colon cancer cells by suppressing GATA6 expression[J]. J Cell Physiol, 2020, 235(3): 2866-2880.
|
44 |
McConnell BB, Bialkowska AB, Nandan MO, et al. Haploinsufficiency of Krüppel-like factor 5 rescues the tumor-initiating effect of the Apc(Min) mutation in the intestine[J]. Cancer Res, 2009, 69(10): 4125-4133.
|
45 |
Morimoto Y, Mizushima T, Wu X, et al. miR-4711-5p regulates cancer stemness and cell cycle progression via KLF5, MDM2 and TFDP1 in colon cancer cells[J]. Br J Cancer, 2020, 122(7): 1037-1049.
|
46 |
Tang D, Yang Z, Long F, et al. Long noncoding RNA MALAT1 mediates stem cell-like properties in human colorectal cancer cells by regulating miR-20b-5p/Oct4 axis[J]. J Cell Physiol, 2019, 234(11): 20816-20828.
|
47 |
Siddique HR, Saleem M. Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences[J]. Stem Cells, 2012, 30(3): 372-378.
|
48 |
Jones MF, Hara T, Francis P, et al. The CDX1-microRNA-215 axis regulates colorectal cancer stem cell differentiation[J]. Proc Natl Acad Sci USA, 2015, 112(13): E1550-1558.
|
49 |
Chen J, Wang Y, Zhuo L, et al. Fas signaling induces stemness properties in colorectal cancer by regulation of Bmi1[J]. Mol Carcinog, 2017, 56(10): 2267-2278.
|
50 |
Liu K, Lin B, Zhao M, et al. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis[J]. Cell Signal, 2013, 25(5): 1264-1271.
|
51 |
Lu YX, Yuan L, Xue XL, et al. Regulation of colorectal carcinoma stemness, growth, and metastasis by an miR-200c-Sox2-negative feedback loop mechanism[J]. Clin Cancer Res, 2014, 20(10): 2631-2642.
|
52 |
Jin Y, Jiang Z, Guan X, et al. miR-450b-5p suppresses stemness and the development of chemoresistance by targeting SOX2 in colorectal cancer[J]. DNA Cell Biol, 2016, 35(5): 249-256.
|
53 |
Li Y, Lv Z, He G, et al. The SOX17/miR-371-5p/SOX2 axis inhibits EMT, stem cell properties and metastasis in colorectal cancer[J]. Oncotarget, 2015, 6(11): 9099-9112.
|
54 |
Becker KA, Ghule PN, Lian JB, et al. Cyclin D2 and the CDK substrate p220(NPAT) are required for self-renewal of human embryonic stem cells[J]. J Cell Physiol, 2010, 222(2): 456-464.
|
55 |
Ye J, Wang Z, Zhao J, et al. MicroRNA-141 inhibits tumor growth and minimizes therapy resistance in colorectal cancer[J]. Mol Med Rep, 2017, 15(3): 1037-1042.
|
56 |
Kang T, Yi J, Yang W, et al. Functional characterization of MT3-MMP in transfected MDCK cells: progelatinase A activation and tubulogenesis in 3-D collagen lattice[J]. Faseb j, 2000, 14(15): 2559-2568.
|
57 |
Xu XT, Xu Q, Tong JL, et al. MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer[J]. Br J Cancer, 2012, 106(7): 1320-1330.
|
58 |
Raha D, Wilson TR, Peng J, et al. The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation[J]. Cancer Res, 2014, 74(13): 3579-3590.
|
59 |
Chen J, Chen Y, Chen Z. MiR-125a/b regulates the activation of cancer stem cells in paclitaxel-resistant colon cancer[J]. Cancer Invest, 2013, 31(1): 17-23.
|
60 |
Qin Y, Chen X, Liu Z, et al. miR-106a reduces 5-fluorouracil (5-FU) sensitivity of colorectal cancer by targeting dual-specificity phosphatases 2 (DUSP2)[J]. Med Sci Monit, 2018, 24: 4944-4951.
|
61 |
Zhang R, Xu J, Zhao J, et al. Knockdown of miR-27a sensitizes colorectal cancer stem cells to TRAIL by promoting the formation of Apaf-1-caspase-9 complex[J]. Oncotarget, 2017, 8(28): 45213-45223.
|
62 |
Mukohyama J, Isobe T, Hu Q, et al. MiR-221 targets QKI to enhance the tumorigenic capacity of human colorectal cancer stem cells[J]. Cancer Res, 2019, 79(20): 5151-5158.
|
63 |
Xi XP, Zhuang J, Teng MJ, et al. MicroRNA-17 induces epithelial-mesenchymal transition consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer[J]. Int J Mol Med, 2016, 38(2): 499-506.
|
64 |
Lv L, Li Q, Chen S, et al. miR-133b suppresses colorectal cancer cell stemness and chemoresistance by targeting methyltransferase DOT1L[J]. Exp Cell Res, 2019, 385(1): 111597.
|
65 |
Zhao H, Su W, Kang Q, et al. Natural killer cells inhibit oxaliplatin-resistant colorectal cancer by repressing WBSCR22 via upregulating microRNA-146b-5p[J]. Am J Cancer Res, 2018, 8(5): 824-834.
|
66 |
Zhao H, Su W, Sun Y, et al. WBSCR22 competes with long non-coding RNA Linc00346 for miR-509-5p binding site to regulate cancer stem cell phenotypes of colorectal cancer[J]. Biochem Genet, 2020, 58(3): 384-398.
|
67 |
Zhang Y, Zheng L, Huang J, et al. MiR-124 Radiosensitizes human colorectal cancer cells by targeting PRRX1[J]. PLoS One, 2014, 9(4): e93917.
|
68 |
Wang Y, Wei C, Yang Y, et al. Hepatocyte nuclear factor-1β suppresses the stemness and migration of colorectal cancer cells through promoting miR-200b activity[J]. Mol Carcinog, 2020, 59(8): 989-999.
|
69 |
Yan TT, Ren LL, Shen CQ, et al. MiR-508 defines the stem-like/mesenchymal subtype in colorectal cancer[J]. Cancer Res, 2018, 78(7): 1751-1765.
|
70 |
Siemens H, Jackstadt R, Kaller M, et al. Repression of c-Kit by p53 is mediated by miR-34 and is associated with reduced chemoresistance, migration and stemness[J]. Oncotarget, 2013, 4(9): 1399-1415.
|
71 |
Ferracin M, Lupini L, Mangolini A, et al. Circulating non-coding RNA as biomarkers in colorectal cancer[J]. Adv Exp Med Biol, 2016, 937: 171-181.
|
72 |
Yamazaki N, Koga Y, Taniguchi H, et al. High expression of miR-181c as a predictive marker of recurrence in stage II colorectal cancer[J]. Oncotarget, 2017, 8(4): 6970-6983.
|
73 |
Sarvizadeh M, Malekshahi ZV, Razi E, et al. MicroRNA: A new player in response to therapy for colorectal cancer[J]. J Cell Physiol, 2019, 234(6): 8533-8540.
|
74 |
Karsten U, Goletz S. What makes cancer stem cell markers different?[J]. Springerplus, 2013, 2(1): 301.
|
75 |
Zhao Y, Xu J, Le VM, et al. EpCAM aptamer-functionalized cationic liposome-based nanoparticles loaded with miR-139-5p for targeted therapy in colorectal cancer[J]. Mol Pharm, 2019, 16(11): 4696-4710.
|