切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2025, Vol. 14 ›› Issue (05) : 474 -480. doi: 10.3877/cma.j.issn.2095-3224.2025.05.012

综述

间充质干细胞来源的外泌体多层面治疗IBD的疗效及机制探讨
陈澳1, 皇甫少华1, 陆雅斐2, 江滨1,()   
  1. 1210000 南京中医药大学附属南京中医院肛肠中心
    2230000 合肥,安徽中医药大学第一附属医院肛肠科
  • 收稿日期:2025-02-11 出版日期:2025-10-25
  • 通信作者: 江滨
  • 基金资助:
    国家自然基金青年科学基金项目(No. 82004365); 2025年江苏省研究生科研创新计划(No. KYCX25_2243)

Exploring the therapeutic efficacy and mechanisms of MSCs-Ex in the multifaceted treatment of IBD

Ao Chen1, Shaohua Huangfu1, Yafei Lu2, Bin Jiang1,()   

  1. 1Colorectal Center, the Affiliated Nanjing Hospital of Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing 210000, China
    2Department of Colorectal Surgery, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230000, China
  • Received:2025-02-11 Published:2025-10-25
  • Corresponding author: Bin Jiang
引用本文:

陈澳, 皇甫少华, 陆雅斐, 江滨. 间充质干细胞来源的外泌体多层面治疗IBD的疗效及机制探讨[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(05): 474-480.

Ao Chen, Shaohua Huangfu, Yafei Lu, Bin Jiang. Exploring the therapeutic efficacy and mechanisms of MSCs-Ex in the multifaceted treatment of IBD[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2025, 14(05): 474-480.

间充质干细胞来源的外泌体(MSCs-Ex)在治疗炎症性肠病中已展示出显著的潜力,其作用包括保护肠道屏障、拮抗肠道炎症、缓解肠道纤维化等,尽管当前研究表明MSCs-Ex在动物及临床试验中具有良好的疗效,但其作用机制复杂,涉及多种病理生理过程,仍值得继续研究。本文旨在系统探讨间充质干细胞来源的外泌体治疗炎症性肠病(IBD)的具体疗效表现及深层作用机制,为其临床应用提供理论依据。

Mesenchymal stem cells-derived exosome have shown significant potential in treating inflammatory bowel disease, with effects including protecting the intestinal barrier, counteracting intestinal inflammation, and alleviating intestinal fibrosis. Although current research indicates that mesenchymal stem cell-derived exosomes have good efficacy in animal and clinical trials, their mechanisms of action are complex, involving various pathophysiological processes, and still warrant further investigation. This article aims to systematically explore the specific efficacy and deep mechanism of inflammatory bowel disease (IBD) treatment of MSCs-Ex, and provide a theoretical basis for its clinical application.

图1 外泌体的分泌、内容物及"靶向"作用(作者团队绘制)
表1 不同种类MSCs-Ex对细胞因子的调控
表2 不同T细胞群体及作用
图2 MSCs-Ex多种层面治疗IBD(作者团队绘制)
[1]
中华医学会肠外肠内营养学分会,中国人体健康科技促进会肠道微生态与肠菌移植专业委员会,上海市预防医学会肠道微生态专业委员会. 肠菌移植治疗炎症性肠病专家共识(2025版)[J]. 中华胃肠外科杂志, 2025, 28(3): 225-235.
[2]
Liao HX, Mao X, Wang L, et al. The role of mesenchymal stem cells in attenuating inflammatory bowel disease through ubiquitination[J]. Front Immunol, 2024, 15: 1423069.
[3]
Chang S, Murphy M, Malter L. A review of available medical therapies to treat moderate to severe inflammatory bowel disease in 2023[J]. Am J Gastroenterol, 2024, 119(1): 55-80.
[4]
Wang K, Zhu Y, Liu K, et al. Adverse events of biologic or small molecule therapies in clinical trials for inflammatory bowel disease: a systematic review and meta-analysis[J]. Heliyon, 2024, 10(4): e25357.
[5]
Din MAU, Wan A, Chu Y, et al. Therapeutic role of extracellular vesicles from human umbilical cord mesenchymal stem cells and their wide therapeutic implications in inflammatory bowel disease and other inflammatory disorder[J]. Front Med, 2024, 11: 1406547.
[6]
Forbes GM, Sturm MJ, Leong RW, et al. A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy[J]. Clin Gastroenterol Hepatol, 2014, 12(1): 64-71.
[7]
Harrell CR, Jankovic MG, Fellabaum C, et al. Molecular mechanisms responsible for anti-inflammatory and immunosuppressive effects of mesenchymal stem cell-derived factors[C]//Tissue engineering and regenerative medicine. Springer International Publishing, 2019: 187-206.
[8]
Rani S, Ryan AE, Griffin MD, et al. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications[J]. Molecular Therapy, 2015, 23(5): 812-823.
[9]
Clua-Ferré L, Suau R, Vañó-Segarra I, et al. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles: a focus on inflammatory bowel disease[J]. Clin Transl Med, 2024, 14(11): e70075.
[10]
Zhou M, He X, Mei C, et al. Exosome derived from tumor-associated macrophages: biogenesis, functions, and therapeutic implications in human cancers[J]. Biomark Res, 2023, 11(1): 100.
[11]
Rackov G, Garcia-Romero N, Esteban-Rubio S, et al. Vesicle-mediated control of cell function: the role of extracellular matrix and microenvironment[J]. Front Physiol, 2018, 9: 651.
[12]
Shen Z, Huang W, Liu J, et al. Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases[J]. Front Immunol, 2021, 12: 749192.
[13]
Riau AK, Ong HS, Yam GHF, et al. Sustained delivery system for stem cell-derived exosomes[J]. Front Pharmacol, 2019, 10: 1368.
[14]
Yamashita T, Takahashi Y, Takakura Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application[J]. Biol Pharm Bull, 2018, 41(6): 835-842.
[15]
Wang G, Yuan J, Cai X, et al. HucMSC‐exosomes carrying miR‐326 inhibit neddylation to relieve inflammatory bowel disease in mice[J]. Clin Transl Med, 2020, 10(2): e113.
[16]
Yu H, Yang X, Xiao X, et al. Human adipose mesenchymal stem cell-derived exosomes protect mice from DSS-induced inflammatory bowel disease by promoting intestinal-stem-cell and epithelial regeneration[J]. Aging Dis, 2021, 12(6): 1423.
[17]
Rieder F, Mukherjee PK, Massey WJ, et al. Fibrosis in IBD: from pathogenesis to therapeutic targets[J]. Gut, 2024, 73(5): 854-866.
[18]
Xu X, Peng J, Wang N, et al. hucMSC-Ex alleviates inflammatory bowel disease in mice by enhancing M2-type macrophage polarization via the METTL3-Slc37a2-YTHDF1 axis[J]. Cell Biol Toxicol, 2024, 40(1): 74.
[19]
Liu H, Liang Z, Wang F, et al. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism[J]. JCI Insight, 2019, 4(24): e131273.
[20]
Wei Z, Hang S, Wiredu Ocansey DK, et al. Human umbilical cord mesenchymal stem cells derived exosome shuttling mir-129-5p attenuates inflammatory bowel disease by inhibiting ferroptosis[J]. J Nanobiotechnology, 2023, 21(1): 188.
[21]
Cai X, Zhang Z, Yuan J, et al. hucMSC-derived exosomes attenuate colitis by regulating macrophage pyroptosis via the miR-378a-5p/NLRP3 axis[J]. Stem Cell Research & Therapy, 2021, 12(1): 1-16.
[22]
Yang S, Liang X, Song J, et al. A novel therapeutic approach for inflammatory bowel disease by exosomes derived from human umbilical cord mesenchymal stem cells to repair intestinal barrier via TSG-6[J]. Stem Cell Res Ther, 2021, 12(1): 315.
[23]
Li M, Luo T, Huang Y, et al. Polysaccharide from pycnoporus sanguineus ameliorates dextran sulfate sodium‐induced colitis via helper T cells repertoire modulation and autophagy suppression[J]. Phytother Res, 2020, 34(10): 2649-2664.
[24]
Zhang L, Yuan J, Ocansey DKW, et al. Exosomes derived from human umbilical cord mesenchymal stem cells regulate lymphangiogenesis via the miR-302d-3p/VEGFR3/AKT axis to ameliorate inflammatory bowel disease[J]. Int Immunopharmacol, 2022, 110: 109066.
[25]
Hou Q, Ye L, Liu H, et al. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22[J]. Cell Death Dis, 2018, 25(9): 1657-1670.
[26]
Burrello J, Monticone S, Gai C, et al. Stem cell-derived extracellular vesicles and immune-modulation[J]. Front Cell Dev Biol, 2016, 4: 83.
[27]
Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells[J]. Int J Mol Sci, 2014, 15(3): 4142-4157.
[28]
Heidari N, Abbasi‐Kenarsari H, Namaki S, et al. Adipose‐derived mesenchymal stem cell‐secreted exosome alleviates dextran sulfate sodium‐induced acute colitis by Treg cell induction and inflammatory cytokine reduction[J]. J Cell Physiol, 2021, 236(8): 5906-5920.
[29]
Cao L, Xu H, Wang G, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization[J]. Int immunopharmacol, 2019, 72: 264-274.
[30]
Tian J, Zhu Q, Zhang Y, et al. Olfactory ecto-mesenchymal stem cell-derived exosomes ameliorate experimental colitis via modulating Th1/Th17 and Treg cell responses[J]. Front Immunol, 2020, 11: 598322.
[31]
Liang X, Li C, Song J, et al. HucMSC-Exo promote mucosal healing in experimental colitis by accelerating intestinal stem cells and epithelium regeneration via wnt signaling pathway[J]. Int J Nanomedicine, 2023, 18: 2799-2818.
[32]
Xu Y, Tang X, Fang A, et al. HucMSC-Ex carrying miR-203a-3p. 2 ameliorates colitis through the suppression of caspase11/4-induced macrophage pyroptosis[J]. Int Immunopharmacol, 2022, 110: 108925.
[33]
Wu P, Zhang B, Shi H, et al. MSC-exosome: a novel cell-free therapy for cutaneous regeneration[J]. Cytotherapy, 2018, 20(3): 291-301.
[34]
Ma ZJ, Wang YH, Li ZG, et al. Immunosuppressive effect of exosomes from mesenchymal stromal cells in defined medium on experimental colitis[J]. Int J Stem Cells, 2019, 12(3): 440-448.
[35]
Wang D, Xue H, Tan J, et al. Bone marrow mesenchymal stem cells-derived exosomes containing miR-539-5p inhibit pyroptosis through NLRP3/caspase-1 signalling to alleviate inflammatory bowel disease[J]. Inflamm Res, 2022, 71(7): 833-846.
[36]
Wang Y, Zhang Y, Lu B, et al. HucMSC-Ex Alleviates IBD-associated intestinal fibrosis by inhibiting ERK phosphorylation in intestinal fibroblasts[J]. Stem Cells Int, 2023, 2023: 2828981.
[37]
Gomez-Bris R, Saez A, Herrero-Fernandez B, et al. CD4 T-cell subsets and the pathophysiology of inflammatory bowel disease[J]. Int J Mol Sci, 2023, 24(3): 2696.
[38]
周春根,江滨,张睿,等. 间充质干细胞来源外泌体对T细胞的免疫调控作用[J]. 中国免疫学杂志, 2021, 37(21): 2602-2607.
[39]
Yang R, Liao Y, Wang L, et al. Exosomes derived from M2b macrophages attenuate DSS-induced colitis[J]. Front Immunol, 2019, 10: 2346.
[40]
Liu R, Tang A, Wang X, et al. Inhibition of lncRNA NEAT1 suppresses the inflammatory response in IBD by modulating the intestinal epithelial barrier and by exosome-mediated polarization of macrophages[J]. Int J Mol Med, 2018, 42(5): 2903-2913.
[41]
Cao X, Duan L, Hou H, et al. IGF-1C hydrogel improves the therapeutic effects of MSCs on colitis in mice through PGE2-mediated M2 macrophage polarization[J]. Theranostics, 2020, 10(17): 7697.
[42]
Dong B, Wang C, Zhang J, et al. Exosomes from human umbilical cord mesenchymal stem cells attenuate the inflammation of severe steroid-resistant asthma by reshaping macrophage polarization[J]. Stem Cell Res Ther, 2021, 12(1): 204.
[43]
Lai P, Weng J, Guo L, et al. Novel insights into MSC-EVs therapy for immune diseases[J]. Biomark Res, 2019, 7(1): 6.
[44]
Ray G, Longworth MS. Epigenetics, DNA organization, and inflammatory bowel disease[J]. Inflammatory Bowel Diseases, 2019, 25(2): 235-247.
[45]
Wani S, Man Law IK, Pothoulakis C. Role and mechanisms of exosomal miRNAs in IBD pathophysiology[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 319(6): G646-G654.
[46]
Qian W, Huang L, Xu Y, et al. Hypoxic ASCs-derived exosomes attenuate colitis by regulating macrophage polarization via miR-216a-5p/HMGB1 axis[J]. Inflamm Bowel Dis, 2023, 29(4): 602-619.
[47]
Zhang T, Ding C, Chen H, et al. m6A mRNA modification maintains colonic epithelial cell homeostasis via NF-κB–mediated antiapoptotic pathway[J]. Sci Adv, 2022, 8(12): eabl5723.
[48]
Ghafouri-Fard S, Eghtedarian R, Taheri M. The crucial role of non-coding RNAs in the pathophysiology of inflammatory bowel disease[J]. Biomed Pharmacother, 2020, 35(9): 1453-1461.
[49]
Zamani P, Oskuee RK, Atkin SL, et al. MicroRNAs as important regulators of the NLRP3 inflammasome[J]. Prog Biophys Mol Biol, 2020, 150: 50-61.
[50]
Zhao J, Wang H, Dong L, et al. miRNA-20b inhibits cerebral ischemia-induced inflammation through targeting NLRP3[J]. Int J Mol Med, 2019, 43(3): 1167-1178.
[51]
Sha R, Zhang B, Han X, et al. Electroacupuncture alleviates ischemic brain injury by inhibiting the miR-223/NLRP3 pathway[J]. Med Sci Monit, 2019, 25: 4723.
[52]
Ying Y, Mao Y, Yao M. NLRP3 inflammasome activation by microRNA-495 promoter methylation may contribute to the progression of acute lung injury[J]. Mol Ther Nucleic Acids, 2019, 18: 801-814.
[53]
Xiong Y, Qiu J, Li C, et al. Fortunellin-induced modulation of phosphatase and tensin homolog by MicroRNA-374a decreases inflammation and maintains intestinal barrier function in colitis[J]. Front Immunol, 2018, 9: 83.
[54]
Xu Y, Zhang L, Ocansey DKW, et al. HucMSC-Ex alleviates inflammatory bowel disease via the lnc78583-mediated miR3202/HOXB13 pathway[J]. J Zhejiang Univ Sci B, 2022, 23(5): 423-431.
[55]
Yuan YY, Xie KX, Wang SL, et al. Inflammatory caspase-related pyroptosis: mechanism, regulation and therapeutic potential for inflammatory bowel disease[J]. Gastroenterol Rep, 2018, 6(3): 167-176.
[56]
Yang J, Liu XX, Fan H, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis[J]. PloS One, 2015, 10(10): e0140551.
[57]
Huang J, Zhang J, Ma J, et al. Inhibiting ferroptosis: a novel approach for ulcerative colitis therapeutics[J]. Oxid Med Cell Longev, 2022, 2022: 9678625.
[58]
Gao W, Zhang T, Wu H. Emerging pathological engagement of ferroptosis in gut diseases[J]. Oxid Med Cell Longev, 2021, 2021: 4246255
[59]
Lei L, Zhang J, Decker EA, et al. Roles of lipid peroxidation-derived electrophiles in pathogenesis of colonic inflammation and colon cancer[J]. Front Cell Dev Biol, 2021, 9: 665591.
[60]
Wu Y, Ran L, Yang Y, et al. Deferasirox alleviates DSS-induced ulcerative colitis in mice by inhibiting ferroptosis and improving intestinal microbiota[J]. Life Sci, 2023, 314: 121312.
[61]
Chen Y, Zhang P, Chen W, et al. Ferroptosis mediated DSS-induced ulcerative colitis associated with Nrf2/HO-1 signaling pathway[J]. Immunol Lett, 2020, 225: 9-15.
[62]
Song J, Kang HJ, Hong JS, et al. Umbilical cord-derived mesenchymal stem cell extracts reduce colitis in mice by re-polarizing intestinal macrophages[J]. Sci Rep, 2017, 7(1): 9412.
[1] 房昊宇, 王筱, 张安伟, 尚丹丹, 俞炯, 曹红翠. 基于粪便代谢组学分析间充质干细胞治疗克罗恩病小鼠的有效性生物标志物[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(02): 98-104.
[2] 黄淳雨, 李文馨, 蒋上, 陈佳佳. 间充质干细胞来源外泌体在肝再生领域的应用[J/OL]. 中华移植杂志(电子版), 2025, 19(04): 268-273.
[3] 刘咏博, 郭佳. 外泌体在前列腺癌细胞免疫逃逸中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 140-145.
[4] 杨健, 杨璐. 体液外泌体在前列腺癌诊断中的应用前景[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 146-151.
[5] 徐康乔, 张国清, 严智亮, 姜涌斌. 外泌体环状RNA 与肺癌关系[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 334-337.
[6] 刘沐芸, 侯凯翔, 韩奇鹏, 崔诗慧, 魏殿华, 符业优, 丁关焱, 从丽萍, 梁晓, 安刚. 脂肪与骨髓间充质干细胞的免疫调节作用及协同治疗潜力分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 220-228.
[7] 李晓, 张娇娇, 董友玉, 张在鹏, 蔡萌萌, 徐峰波. 间充质干细胞在再生医学中的基础研究与临床应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 229-237.
[8] 彭惊龙, 张潇月, 王红美. 脐带间充质干细胞治疗造血干细胞移植术后卵巢早衰的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 245-250.
[9] 李雪铭, 伊诺, 卢智豪, 冯婧, 董健藤, 李健. 人脐带间充质干细胞来源外泌体抑制肝星状细胞活化发挥抗肝纤维化作用的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 148-156.
[10] 张剑豪, 蔡丹文, 蒋辰浩, 张宇君, 韩路, 赵雪刚, 吕行, 萧家麒, 张杰滨, 隋昕, 张英才. 过表达POSTN 的间充质干细胞来源外泌体增强肝脏再生能力[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 65-74.
[11] 梁瑶瑶, 邬绿莹, 陈津. 负载干细胞外泌体水凝胶治疗糖尿病足溃疡的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 112-119.
[12] 罗臻, 韦鹏程, 孙馨, 李照. 肝细胞癌骨转移研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 522-527.
[13] 陈雨浩, 张楚悦, 绳春佳, 肖拓, 姜波, 蔡广研. 超声微泡辅助间充质干细胞来源外泌体超声引导的肾内递送对大鼠急性肾损伤的治疗作用[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 126-132.
[14] 葛程, 石燕红, 陶勇. 调节性T细胞外泌体对血管内皮细胞保护作用的实验研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 155-160.
[15] 王军, 陈娟, 刘茜红. 血浆外泌体circLPAR1在胃癌诊断及预后评估中的临床价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 300-304.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?