| [1] |
中华医学会肠外肠内营养学分会,中国人体健康科技促进会肠道微生态与肠菌移植专业委员会,上海市预防医学会肠道微生态专业委员会. 肠菌移植治疗炎症性肠病专家共识(2025版)[J]. 中华胃肠外科杂志, 2025, 28(3): 225-235.
|
| [2] |
Liao HX, Mao X, Wang L, et al. The role of mesenchymal stem cells in attenuating inflammatory bowel disease through ubiquitination[J]. Front Immunol, 2024, 15: 1423069.
|
| [3] |
Chang S, Murphy M, Malter L. A review of available medical therapies to treat moderate to severe inflammatory bowel disease in 2023[J]. Am J Gastroenterol, 2024, 119(1): 55-80.
|
| [4] |
Wang K, Zhu Y, Liu K, et al. Adverse events of biologic or small molecule therapies in clinical trials for inflammatory bowel disease: a systematic review and meta-analysis[J]. Heliyon, 2024, 10(4): e25357.
|
| [5] |
Din MAU, Wan A, Chu Y, et al. Therapeutic role of extracellular vesicles from human umbilical cord mesenchymal stem cells and their wide therapeutic implications in inflammatory bowel disease and other inflammatory disorder[J]. Front Med, 2024, 11: 1406547.
|
| [6] |
Forbes GM, Sturm MJ, Leong RW, et al. A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy[J]. Clin Gastroenterol Hepatol, 2014, 12(1): 64-71.
|
| [7] |
Harrell CR, Jankovic MG, Fellabaum C, et al. Molecular mechanisms responsible for anti-inflammatory and immunosuppressive effects of mesenchymal stem cell-derived factors[C]//Tissue engineering and regenerative medicine. Springer International Publishing, 2019: 187-206.
|
| [8] |
Rani S, Ryan AE, Griffin MD, et al. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications[J]. Molecular Therapy, 2015, 23(5): 812-823.
|
| [9] |
Clua-Ferré L, Suau R, Vañó-Segarra I, et al. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles: a focus on inflammatory bowel disease[J]. Clin Transl Med, 2024, 14(11): e70075.
|
| [10] |
Zhou M, He X, Mei C, et al. Exosome derived from tumor-associated macrophages: biogenesis, functions, and therapeutic implications in human cancers[J]. Biomark Res, 2023, 11(1): 100.
|
| [11] |
Rackov G, Garcia-Romero N, Esteban-Rubio S, et al. Vesicle-mediated control of cell function: the role of extracellular matrix and microenvironment[J]. Front Physiol, 2018, 9: 651.
|
| [12] |
Shen Z, Huang W, Liu J, et al. Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases[J]. Front Immunol, 2021, 12: 749192.
|
| [13] |
Riau AK, Ong HS, Yam GHF, et al. Sustained delivery system for stem cell-derived exosomes[J]. Front Pharmacol, 2019, 10: 1368.
|
| [14] |
Yamashita T, Takahashi Y, Takakura Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application[J]. Biol Pharm Bull, 2018, 41(6): 835-842.
|
| [15] |
Wang G, Yuan J, Cai X, et al. HucMSC‐exosomes carrying miR‐326 inhibit neddylation to relieve inflammatory bowel disease in mice[J]. Clin Transl Med, 2020, 10(2): e113.
|
| [16] |
Yu H, Yang X, Xiao X, et al. Human adipose mesenchymal stem cell-derived exosomes protect mice from DSS-induced inflammatory bowel disease by promoting intestinal-stem-cell and epithelial regeneration[J]. Aging Dis, 2021, 12(6): 1423.
|
| [17] |
Rieder F, Mukherjee PK, Massey WJ, et al. Fibrosis in IBD: from pathogenesis to therapeutic targets[J]. Gut, 2024, 73(5): 854-866.
|
| [18] |
Xu X, Peng J, Wang N, et al. hucMSC-Ex alleviates inflammatory bowel disease in mice by enhancing M2-type macrophage polarization via the METTL3-Slc37a2-YTHDF1 axis[J]. Cell Biol Toxicol, 2024, 40(1): 74.
|
| [19] |
Liu H, Liang Z, Wang F, et al. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism[J]. JCI Insight, 2019, 4(24): e131273.
|
| [20] |
Wei Z, Hang S, Wiredu Ocansey DK, et al. Human umbilical cord mesenchymal stem cells derived exosome shuttling mir-129-5p attenuates inflammatory bowel disease by inhibiting ferroptosis[J]. J Nanobiotechnology, 2023, 21(1): 188.
|
| [21] |
Cai X, Zhang Z, Yuan J, et al. hucMSC-derived exosomes attenuate colitis by regulating macrophage pyroptosis via the miR-378a-5p/NLRP3 axis[J]. Stem Cell Research & Therapy, 2021, 12(1): 1-16.
|
| [22] |
Yang S, Liang X, Song J, et al. A novel therapeutic approach for inflammatory bowel disease by exosomes derived from human umbilical cord mesenchymal stem cells to repair intestinal barrier via TSG-6[J]. Stem Cell Res Ther, 2021, 12(1): 315.
|
| [23] |
Li M, Luo T, Huang Y, et al. Polysaccharide from pycnoporus sanguineus ameliorates dextran sulfate sodium‐induced colitis via helper T cells repertoire modulation and autophagy suppression[J]. Phytother Res, 2020, 34(10): 2649-2664.
|
| [24] |
Zhang L, Yuan J, Ocansey DKW, et al. Exosomes derived from human umbilical cord mesenchymal stem cells regulate lymphangiogenesis via the miR-302d-3p/VEGFR3/AKT axis to ameliorate inflammatory bowel disease[J]. Int Immunopharmacol, 2022, 110: 109066.
|
| [25] |
Hou Q, Ye L, Liu H, et al. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22[J]. Cell Death Dis, 2018, 25(9): 1657-1670.
|
| [26] |
Burrello J, Monticone S, Gai C, et al. Stem cell-derived extracellular vesicles and immune-modulation[J]. Front Cell Dev Biol, 2016, 4: 83.
|
| [27] |
Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells[J]. Int J Mol Sci, 2014, 15(3): 4142-4157.
|
| [28] |
Heidari N, Abbasi‐Kenarsari H, Namaki S, et al. Adipose‐derived mesenchymal stem cell‐secreted exosome alleviates dextran sulfate sodium‐induced acute colitis by Treg cell induction and inflammatory cytokine reduction[J]. J Cell Physiol, 2021, 236(8): 5906-5920.
|
| [29] |
Cao L, Xu H, Wang G, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization[J]. Int immunopharmacol, 2019, 72: 264-274.
|
| [30] |
Tian J, Zhu Q, Zhang Y, et al. Olfactory ecto-mesenchymal stem cell-derived exosomes ameliorate experimental colitis via modulating Th1/Th17 and Treg cell responses[J]. Front Immunol, 2020, 11: 598322.
|
| [31] |
Liang X, Li C, Song J, et al. HucMSC-Exo promote mucosal healing in experimental colitis by accelerating intestinal stem cells and epithelium regeneration via wnt signaling pathway[J]. Int J Nanomedicine, 2023, 18: 2799-2818.
|
| [32] |
Xu Y, Tang X, Fang A, et al. HucMSC-Ex carrying miR-203a-3p. 2 ameliorates colitis through the suppression of caspase11/4-induced macrophage pyroptosis[J]. Int Immunopharmacol, 2022, 110: 108925.
|
| [33] |
Wu P, Zhang B, Shi H, et al. MSC-exosome: a novel cell-free therapy for cutaneous regeneration[J]. Cytotherapy, 2018, 20(3): 291-301.
|
| [34] |
Ma ZJ, Wang YH, Li ZG, et al. Immunosuppressive effect of exosomes from mesenchymal stromal cells in defined medium on experimental colitis[J]. Int J Stem Cells, 2019, 12(3): 440-448.
|
| [35] |
Wang D, Xue H, Tan J, et al. Bone marrow mesenchymal stem cells-derived exosomes containing miR-539-5p inhibit pyroptosis through NLRP3/caspase-1 signalling to alleviate inflammatory bowel disease[J]. Inflamm Res, 2022, 71(7): 833-846.
|
| [36] |
Wang Y, Zhang Y, Lu B, et al. HucMSC-Ex Alleviates IBD-associated intestinal fibrosis by inhibiting ERK phosphorylation in intestinal fibroblasts[J]. Stem Cells Int, 2023, 2023: 2828981.
|
| [37] |
Gomez-Bris R, Saez A, Herrero-Fernandez B, et al. CD4 T-cell subsets and the pathophysiology of inflammatory bowel disease[J]. Int J Mol Sci, 2023, 24(3): 2696.
|
| [38] |
周春根,江滨,张睿,等. 间充质干细胞来源外泌体对T细胞的免疫调控作用[J]. 中国免疫学杂志, 2021, 37(21): 2602-2607.
|
| [39] |
Yang R, Liao Y, Wang L, et al. Exosomes derived from M2b macrophages attenuate DSS-induced colitis[J]. Front Immunol, 2019, 10: 2346.
|
| [40] |
Liu R, Tang A, Wang X, et al. Inhibition of lncRNA NEAT1 suppresses the inflammatory response in IBD by modulating the intestinal epithelial barrier and by exosome-mediated polarization of macrophages[J]. Int J Mol Med, 2018, 42(5): 2903-2913.
|
| [41] |
Cao X, Duan L, Hou H, et al. IGF-1C hydrogel improves the therapeutic effects of MSCs on colitis in mice through PGE2-mediated M2 macrophage polarization[J]. Theranostics, 2020, 10(17): 7697.
|
| [42] |
Dong B, Wang C, Zhang J, et al. Exosomes from human umbilical cord mesenchymal stem cells attenuate the inflammation of severe steroid-resistant asthma by reshaping macrophage polarization[J]. Stem Cell Res Ther, 2021, 12(1): 204.
|
| [43] |
Lai P, Weng J, Guo L, et al. Novel insights into MSC-EVs therapy for immune diseases[J]. Biomark Res, 2019, 7(1): 6.
|
| [44] |
Ray G, Longworth MS. Epigenetics, DNA organization, and inflammatory bowel disease[J]. Inflammatory Bowel Diseases, 2019, 25(2): 235-247.
|
| [45] |
Wani S, Man Law IK, Pothoulakis C. Role and mechanisms of exosomal miRNAs in IBD pathophysiology[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 319(6): G646-G654.
|
| [46] |
Qian W, Huang L, Xu Y, et al. Hypoxic ASCs-derived exosomes attenuate colitis by regulating macrophage polarization via miR-216a-5p/HMGB1 axis[J]. Inflamm Bowel Dis, 2023, 29(4): 602-619.
|
| [47] |
Zhang T, Ding C, Chen H, et al. m6A mRNA modification maintains colonic epithelial cell homeostasis via NF-κB–mediated antiapoptotic pathway[J]. Sci Adv, 2022, 8(12): eabl5723.
|
| [48] |
Ghafouri-Fard S, Eghtedarian R, Taheri M. The crucial role of non-coding RNAs in the pathophysiology of inflammatory bowel disease[J]. Biomed Pharmacother, 2020, 35(9): 1453-1461.
|
| [49] |
Zamani P, Oskuee RK, Atkin SL, et al. MicroRNAs as important regulators of the NLRP3 inflammasome[J]. Prog Biophys Mol Biol, 2020, 150: 50-61.
|
| [50] |
Zhao J, Wang H, Dong L, et al. miRNA-20b inhibits cerebral ischemia-induced inflammation through targeting NLRP3[J]. Int J Mol Med, 2019, 43(3): 1167-1178.
|
| [51] |
Sha R, Zhang B, Han X, et al. Electroacupuncture alleviates ischemic brain injury by inhibiting the miR-223/NLRP3 pathway[J]. Med Sci Monit, 2019, 25: 4723.
|
| [52] |
Ying Y, Mao Y, Yao M. NLRP3 inflammasome activation by microRNA-495 promoter methylation may contribute to the progression of acute lung injury[J]. Mol Ther Nucleic Acids, 2019, 18: 801-814.
|
| [53] |
Xiong Y, Qiu J, Li C, et al. Fortunellin-induced modulation of phosphatase and tensin homolog by MicroRNA-374a decreases inflammation and maintains intestinal barrier function in colitis[J]. Front Immunol, 2018, 9: 83.
|
| [54] |
Xu Y, Zhang L, Ocansey DKW, et al. HucMSC-Ex alleviates inflammatory bowel disease via the lnc78583-mediated miR3202/HOXB13 pathway[J]. J Zhejiang Univ Sci B, 2022, 23(5): 423-431.
|
| [55] |
Yuan YY, Xie KX, Wang SL, et al. Inflammatory caspase-related pyroptosis: mechanism, regulation and therapeutic potential for inflammatory bowel disease[J]. Gastroenterol Rep, 2018, 6(3): 167-176.
|
| [56] |
Yang J, Liu XX, Fan H, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis[J]. PloS One, 2015, 10(10): e0140551.
|
| [57] |
Huang J, Zhang J, Ma J, et al. Inhibiting ferroptosis: a novel approach for ulcerative colitis therapeutics[J]. Oxid Med Cell Longev, 2022, 2022: 9678625.
|
| [58] |
Gao W, Zhang T, Wu H. Emerging pathological engagement of ferroptosis in gut diseases[J]. Oxid Med Cell Longev, 2021, 2021: 4246255
|
| [59] |
Lei L, Zhang J, Decker EA, et al. Roles of lipid peroxidation-derived electrophiles in pathogenesis of colonic inflammation and colon cancer[J]. Front Cell Dev Biol, 2021, 9: 665591.
|
| [60] |
Wu Y, Ran L, Yang Y, et al. Deferasirox alleviates DSS-induced ulcerative colitis in mice by inhibiting ferroptosis and improving intestinal microbiota[J]. Life Sci, 2023, 314: 121312.
|
| [61] |
Chen Y, Zhang P, Chen W, et al. Ferroptosis mediated DSS-induced ulcerative colitis associated with Nrf2/HO-1 signaling pathway[J]. Immunol Lett, 2020, 225: 9-15.
|
| [62] |
Song J, Kang HJ, Hong JS, et al. Umbilical cord-derived mesenchymal stem cell extracts reduce colitis in mice by re-polarizing intestinal macrophages[J]. Sci Rep, 2017, 7(1): 9412.
|