切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2024, Vol. 13 ›› Issue (06) : 499 -509. doi: 10.3877/cma.j.issn.2095-3224.2024.06.009

论著

溃疡性结肠炎患者相关环状RNA 差异表达谱分析及功能研究
董晓斌1, 张静2, 苏莎莎2,(), 莎比亚·沙吾提2, 盛好2   
  1. 1.830000 乌鲁木齐,新疆医科大学第四临床医学院消化内科
    2.830000 乌鲁木齐,新疆维吾尔自治区中医医院消化内科2
  • 收稿日期:2024-10-14 出版日期:2024-12-25
  • 通信作者: 苏莎莎
  • 基金资助:
    新疆维吾尔自治区面上项目(No.2022D01C163)

Differential expression profile and functional study of related circular RNA in patients with ulcerative colitis

Xiaobin Dong1, Jing Zhang2, Shasha Su2,(), Hao Sheng2   

  1. 1.Department of Gastroenterology, the Fourth Clinical Medical College of Xinjiang Medical University, Urumqi 830000,China
    2.Department of Gastroenterology, Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Urumqi 830000, China
  • Received:2024-10-14 Published:2024-12-25
  • Corresponding author: Shasha Su
引用本文:

董晓斌, 张静, 苏莎莎, 莎比亚·沙吾提, 盛好. 溃疡性结肠炎患者相关环状RNA 差异表达谱分析及功能研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 499-509.

Xiaobin Dong, Jing Zhang, Shasha Su, Hao Sheng. Differential expression profile and functional study of related circular RNA in patients with ulcerative colitis[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2024, 13(06): 499-509.

目的

利用高通量测序和生物信息学技术,分析溃疡性结肠炎(UC)中环状RNA(circRNA)表达特征。

方法

选取医院确诊的8 例UC 患者为观察组,根据其病情和结肠镜下黏膜表现分为活动期组和缓解期组,每组各4 例,另选4 名健康体检者纳入对照组,运用circRNA 高通量测序检测三组结肠组织中circRNAs 和信使核糖核酸(mRNAs)表达谱,运用在线生物信息学软件关联分析差异circRNAs 及预测的靶向微小核糖核酸(miRNAs)的生物学功能。

结果

高通量测序结果预处理分析中,三个样本组在总体基因的表达一致,通过对circRNAs 和mRNAs 的数据进行聚类分析发现,在三组样本中,circRNAs 和mRNAs 的基因表达存在明显的差异。筛选表达的circRNAs差异倍数≥1.5 或≤0.5,其中活动期组同对照组比对差异circRNAs 共217 个,有135 个表达上调,82 个表达下调;缓解期组同对照组比对差异circRNAs 共212 个,有98 个表达上调,114 个表达下调;活动期组同缓解期组比对差异circRNAs 共147 个,有95 个表达上调,52 个表达下调,差异表达的circRNAs 主要在免疫系统、炎症通路、细胞周期和信号转导通路的调控等功能上显著富集;运用miranda 和RNAhybrid 两种方法的交集预测7 个免疫和炎症相关差异miRNA-circRNA 靶标关系,分析circRNA-miRNA-UC 分子调控机制。

结论

UC 活动期和缓解期患者及健康者的结肠组织之间存在差异表达的circRNAs,且可能参与UC 的致病调控过程。

Objective

To analyze the expression characteristics of circular RNA(circRNA)in ulcerative colitis(UC) using high-throughput sequencing and bioinformatics techniques.

Methods

Eight diagnosed UC patients from the hospital were selected as the observation group, divided into an active phase group and a remission phase group based on their condition and colonoscopic mucosal findings,with 4 cases in each group.Additionally, four healthy individuals were included in the control group.CircRNA highthroughput sequencing was used to detect the expression profiles of circRNAs and messenger RNAs(mRNAs)in the colon tissues of the three groups.Online bioinformatics software was utilized to correlate the biological functions of differentially expressed circRNAs and the predicted target microRNAs(miRNAs) of circRNAs.

Results

The preprocessing analysis of high-throughput sequencing results indicated that the overall gene expression was consistent among the three sample groups.Clustering analysis of circRNAs and mRNAs data revealed significant differences in gene expression among the three sample groups.CircRNAs with a fold-change of ≥1.5 or ≤0.5 were screened.A total of 217 differentially expressed circRNAs were identified between active phase group and Control group, with 135 upregulated and 82 downregulated; 212 differentially expressed circRNAs between remission group and control group, with 98 upregulated and 114 downregulated; and 147 differentially expressed circRNAs between active phase group and remission group,with 95 upregulated and 52 downregulated.The differentially expressed circRNAs were significantly enriched in functions related to the immune system, inflammatory pathways, cell cycle, and signaling pathways.The intersection of miranda and RNAhybrid was used to predict 7 differential miRNA-circRNA target relationships related to immunity and inflammation, and the molecular regulatory mechanism of circRNAmiRNA-UC was analyzed.

Conclusion

There are differentially expressed circRNAs between the colon tissues of UC patients during active and remission phases and healthy individuals, which may participate in the pathogenic regulatory process of UC.

图1 高通量测序结果质量检测图。1A 为箱式图展示不同样本归一化前总体基因表达情况;1B 为箱式图展示不同样本归一化后总体基因表达情况;1C 为所有样本间基因表达水平相关性系数进行样本间聚类;1D 为热图,展示所有样本显著差异表达基因;1E 为活动期组对比对照组差异表达基因的火山图;1F 为活动期组对比缓解组差异表达基因的火山图;1G 为缓解期组对比对照组差异表达基因的火山图;其中E、F、G 中图中差异circRNAs 表达倍数≥2,P ≤0.05,红色为表达上调的差异表达基因,蓝色为表达下调的差异表达基因,组间比较采用t 检验。1H 为对所有样本circRNA 表达的差异性通过样本相关性系数进行样本间聚类分析
图2 三组样本间组件差异表达circRNA 散点图。图2A 展示活动期组同对照组组间差异表达的circRNAs,图2B 展示活动期组同缓解期组组间差异表达的circRNAs,图2C 展示缓解期组同对照组组间差异表达的circRNAs,其中A、B、C 中图中差异circRNAs 表达倍数≥2,P ≤0.05,组间比较采用t 检验
图3 A_UC 同N_UC 差异表达circRNAs 的GO 富集分析。3A 为活动期组同对照组差异表达的circRNAs 上调的GO 细胞组分富集分析,3B 为活动期组同对照组差异表达的circRNAs 上调的GO 生物过程富集分析,3C 为活动期组同对照组差异表达的circRNAs上调的GO分子功能富集分析,3D 为活动期组同对照组差异表达的circRNAs下调的GO细胞组分富集分析,3E 为活动期组同对照组差异表达的circRNAs 下调的GO 生物过程富集分析,3F 为活动期组同对照组差异表达的circRNAs下调的GO 分子功能富集分析
图4 缓解期组同对照组差异表达circRNAs 的GO 富集分析。4A 为缓解期组同对照组差异表达的circRNAs 上调的GO 细胞组分富集分析,4B 为缓解期组同对照组差异表达的circRNAs 上调的GO 生物过程富集分析,4C 为缓解期组同对照组差异表达的circRNAs 上调的GO 分子功能富集分析,4D 为缓解期组同对照组差异表达的circRNAs 下调的GO 细胞组分富集分析,4E 为缓解期组同对照组差异表达的circRNAs 下调的GO 生物过程富集分析,4F 为缓解期组同对照组 差异表达的circRNAs 下调的GO 分子功能富集分析
图5 活动期组同缓解期组差异表达circRNAs 的GO 富集分析。5A 为活动期组同缓解期组差异表达的circRNAs 上调的GO 细胞组分富集分析,5B 为活动期组同缓解期组差异表达的circRNAs 上调的GO 生物过程富集分析,5C 为活动期组同缓解期组差异表达的circRNAs 上调的GO 分子功能富集分析,5D 为活动期组同缓解期组差异表达的circRNAs 下调的GO细胞组分富集分析,5E 为活动期组同缓解期组差异表达的circRNAs 下调的GO 分子功能富集分析
图6 活动期组同对照组差异表达circRNAs 的KEGG 富集分析。6A 为活动期组同对照组差异表达的circRNAs 上调的KEGG 富集分析,6B 为活动期组同对照组差异表达circRNAs 下调的KEGG 富集分析
图7 缓解期组同对照组差异表达circRNAs 的KEGG 富集分析。7A 为缓解期组同对照组差异表达的circRNAs 上调的KEGG 富集分析,7B 为缓解期组同对照组差异表达的circRNAs 下调的KEGG 富集分析
图8 活动期组同缓解期组差异表达circRNAs 的KEGG 富集分析。8A 为活动期组同缓解期组差异表达circRNAs 上调的KEGG 富集分析,8B 为活动期组同缓解期组差异表达circRNAs 下调的KEGG 富集分析
表1 溃疡性结肠炎有关于免疫和炎症相关显著差异表达的基因的 7 个circRNA-miRNA 通路信息
[1]
Lamb CA, Kennedy NA, Raine T, et al.British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults[J].Gut, 2019, 68(Suppl 3): s1-s106.
[2]
Kazmi I, Altamimi ASA, Afzal M, et al.Non-coding RNAs: emerging biomarkers and therapeutic targets in ulcerative colitis[J].Pathol Res Pract, 2024, 253: 155037.
[3]
Yuan YY, Wu H, Chen QY, et al.Construction of the underlying circRNA-miRNA-mRNA regulatory network and a new diagnostic model in ulcerative colitis by bioinformatics analysis[J].WJCC, 2024,12(9): 1606-1621.
[4]
Xu S, Chen S, Zhang M, et al.Reconstruction and differential expression profiling core target analyses of the circrna-mirna-mrna network based on competitive endogenous RNAS in ulcerative colitis[J].eCAM, 2022,2022: 4572181.
[5]
Nakase H, Sato N, Mizuno N.The influence of cytokines on the complex pathology of ulcerative colitis[J].Autoimmun Rev, 2022,21(3):103017.
[6]
Wang Y, Zhuang H, Jiang XH, et al.Unveiling the key genes,environmental toxins, and drug exposures in modulating the severity of ulcerative colitis: a comprehensive analysis[J].Front, Immunol, 2023,14: 1162458.
[7]
Suzuki H, Joshita S, Hirayama A, et al.Polymorphism at rs9264942 is associated with HLA-C expression and inflammatory bowel disease in the Japanese[J].Sci Rep, 2020,10(1):12424.
[8]
Zhao Q, Wang F, Chen YX, et al.Comprehensive profiling of 1015 patients’ exomes reveals genomic-clinical associations in colorectal cancer[J].Nat Commun, 2022, 2022, 13(1): 2342.
[9]
Luan J, Jiao C, Kong W, et al.circHLA-C plays an important role in lupus nephritis by sponging miR-150[J].Mol Ther Nucleic Acids,2018, 10: 245-253.
[10]
Castro-Santos P, Moro-Garcia MA, Alonso-Arias R,et al.ERAP1 and HLA-C interaction in inflammatory bowel disease in the Spanish population[J].Innate Immun, 2017, 23(5): 476-481.
[11]
Nakase H, Sato N, Mizuno N, et al.The influence of cytokines on the complex pathology of ulcerative colitis[J].Autoimmun Rev, 2022,21(3): 103017.
[12]
Kristensen LS, Okholm TLH, Veno MT, et al.Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation[J].RNA Biol, 2018, 15(2): 280-291.
[13]
Li S, Chen J, Fan Y, et al.circZNF91 promotes the malignant phenotype of chronic lymphocytic leukemia cells by targeting the miR-1283/WEE1 axis[J].Biomed Res Int, 2022, 2022: 2855394.
[14]
Zhu R, Tang J, Xing C, et al.The distinguishing bacterial features from active and remission stages of ulcerative colitis revealed by paired fecal metagenomes[J].Front Microbiol, 2022, 13: 883495.
[15]
Saez A, Herrero-Fernandez B, Gomez-Bris R, et al.Pathophysiology of inflammatory bowel disease: innate immune system[J].Int J Mol Sci, 2023, 24(2): 1526.
[16]
van der Post S,Jabbar KS,Birchenough G,et al.Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis[J].Gut, 2019, 68(12): 2142-2151.
[17]
Wang Y,Chen H,Liu W,et al.MCM6 is a critical transcriptional target of YAP to promote gastric tumorigenesis and serves as a therapeutic target[J].Theranostics, 2022, 12(15): 6509-6526.
[18]
Zeng T, Guan Y, Li YK, et al.The DNA replication regulator MCM6:an emerging cancer biomarker and target[J].Clin Chim Acta, 2021,517: 92-98.
[19]
Nounu A, Greenhough A, Heesom KJ, et al.A combined proteomics and mendelian randomization approach to investigate the effects of aspirin-targeted proteins on colorectal cancer[J].Cancer Epidemiol Biomarkers Prev, 2021, 30(3): 564-575.
[1] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
阅读次数
全文


摘要