切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2024, Vol. 13 ›› Issue (02) : 101 -111. doi: 10.3877/cma.j.issn.2095-3224.2024.02.003

论著

脂肪酸分解代谢相关基因ABHD1和PLA2G15在结直肠癌不良预后及肿瘤进展中的研究
王文鹏1, 邓露2, 施丹3, 胡均1, 王捷夫1, 云铎4, 孔大陆1,()   
  1. 1. 300060 天津医科大学肿瘤医院结直肠肿瘤科,国家恶性肿瘤临床医学研究中心,天津市恶性肿瘤临床医学研究中心,天津市消化系统肿瘤重点实验室
    2. 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院妇瘤科
    3. 300100 天津医科大学南开临床学院胃肠外科,天津市急腹症器官损伤与中西医修复重点实验室,天津市中西医结合急腹症研究所
    4. 010020 呼和浩特市第一医院肿瘤科
  • 收稿日期:2023-08-22 出版日期:2024-04-25
  • 通信作者: 孔大陆
  • 基金资助:
    国家自然科学基金(82373134); 天津市教委科研计划基金(2022KJ228); 中国抗癌协会-恒瑞抗血管生成靶向肿瘤研究基金(2021001045); 天津医科大学肿瘤医院国家自然科学基金培育计划(220108); 天津大学温州安全(应急)研究院科研转化基金(TJUWYYY2022025); 天津市医学重点学科(与科)建设项目(TJYXZDXK-009A)

Role of fatty acid catabolism related genes ABHD1 and PLA2G15 predicting poor prognosis and promoting tumor progression in colorectal cancer

Wenpeng Wang1, Lu Deng2, Dan Shi3, Jun Hu1, Jiefu Wang1, Duo Yun4, Dalu Kong1,()   

  1. 1. Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
    2. Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
    3. Department of Gastrointestinal Surgery, Tianjin Nan Kai Hospital, Tianjin Medical University, Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China
    4. Department of Oncology, the First Hospital of Hohhot, Hohhot 010020, China
  • Received:2023-08-22 Published:2024-04-25
  • Corresponding author: Dalu Kong
引用本文:

王文鹏, 邓露, 施丹, 胡均, 王捷夫, 云铎, 孔大陆. 脂肪酸分解代谢相关基因ABHD1和PLA2G15在结直肠癌不良预后及肿瘤进展中的研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(02): 101-111.

Wenpeng Wang, Lu Deng, Dan Shi, Jun Hu, Jiefu Wang, Duo Yun, Dalu Kong. Role of fatty acid catabolism related genes ABHD1 and PLA2G15 predicting poor prognosis and promoting tumor progression in colorectal cancer[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2024, 13(02): 101-111.

目的

构建脂肪酸分解代谢(FAC)相关基因风险评分预后模型并验证模型中基因ABHD1和PLA2G15在结直肠癌中的作用。

方法

FAC相关基因集来自GSEA官网。从TCGA下载结直肠癌RNA测序数据和临床信息,并对癌组织和正常组织样本进行FAC相关基因差异分析。单因素Cox回归分析筛选出与预后相关的差异基因,之后,利用LASSO回归进一步分析并筛选出目标基因建立预后模型。外部数据集(GSE39582)验证预后模型。最后采用CCK-8、集落形成和细胞周期实验验证目标基因中ABHD1和PLA2G15在结直肠癌细胞系中的作用。

结果

102个FAC相关基因通过差异分析、单因素Cox回归分析及LASSO回归分析,筛选出由ABHD1、ACOX1、CPT2、HADH和PLA2G15构建的风险评分预后模型。与低风险评分相比,高风险评分的预后更差。多因素Cox回归分析显示预后模型为独立的预后因素。外部数据集(GSE39582)也验证了该模型评估预后的作用。对ABHD1和PLA2G15基因进行了实验验证,结果表明ABHD1和PLA2G15在体外具有促进结直肠癌细胞增殖的作用。

结论

FAC相关基因风险模型具有预测结直肠癌患者预后的作用。ABHD1和PLA2G15可能对结直肠癌的生长具有一定促进作用,值得进一步研究。

Objective

To construct a prognostic model for fatty acid catabolism (FAC) related genes and validate the role of ABHD1 and PLA2G15 in colorectal cancer.

Methods

The FAC related gene set was obtained from GSEA. RNA sequencing data and clinical information of colorectal cancer were downloaded from TCGA. We performed differential expressed analysis for FAC related genes between tumor and normal samples. Univariate Cox regression analysis was used to screen differential expressed genes associated with prognosis, and then LASSO regression was utilized to further analyze and screen target genes to establish a prognostic model. The prognostic model was validated by an external dataset (GSE39582). Finally, the biological functions of ABHD1 and PLA2G15 in colorectal cancer cell lines were validated using CCK-8, colony formation, and cell cycle assays.

Results

Through previous analyses, 5 genes (ABHD1, ACOX1, CPT2, HADH, and PLA2G15) among 102 FAC related genes were selected to construct a risk scoring prognostic model. Patients with high-risk scores had a worse prognosis compared to those with low-risk scores. Multivariate Cox regression analysis showed that the prognostic model was an independent prognostic factor. The external dataset (GSE39582) also validated the effect of this prognostic model evaluating prognosis. We conducted experimental validation for these two genes. The experimental results indicated that ABHD1 and PLA2G15 had impacts on promoting the proliferation of colorectal cancer cells in vitro.

Conclusion

The FAC prognostic model has a predictive effect on the prognosis of colorectal cancer patients. ABHD1 and PLA2G15 may have a certain promoting effect on the growth of colorectal cancer, which deserves further research.

图1 TCGA中结直肠癌与正常组织之间FAC相关基因差异分析。1A:热图;1B:火山图
图2 风险评分预后模型的构建。2A:单因素Cox回归分析筛选出的差异基因;2B:LASSO回归分析进一步筛选出的最佳基因数;2C:预后模型中5个基因的风险系数;2D:预后模型KM生存曲线;2E:预后模型单因素Cox回归分析;2F:预后模型多因素Cox回归分析
图3 TCGA中FAC预后模型的生存评估。3A:PCA分析;3B:ROC曲线;3C:高低风险组患者的风险评分分布、构建预后模型的基因热图和高低风险组患者的生死分布
图4 基于不同临床亚组的FAC预后模型高低风险组的生存比较。4A:年龄≤65岁组;4B:年龄>65岁组;4C:女性组;4D:男性组;4E:淋巴结转移组;4F:无淋巴结转移组;4G:Ⅰ~Ⅱ期组;4H:Ⅲ~Ⅳ期组
图5 GEO中FAC预后模型的生存验证。5A:预后模型KM生存曲线;5B:PCA分析;5C:高低风险组患者的风险评分分布、构建预后模型的基因热图和高低风险组患者的生死分布
图6 ABHD1或PLA2G15敲低后的mRNA表达水平及其在CCK8实验中对细胞增殖的影响。6A:DLD-1细胞系中ABHD1敲低的相对mRNA水平;6B:DLD-1细胞系中PLA2G15敲低的相对mRNA水平;6C:SW480细胞系中ABHD1敲低的相对mRNA水平;6D:SW480细胞系中PLA2G15敲低的相对mRNA水平;6E:DLD-1细胞系中ABHD1敲低的相对细胞增殖;6F:DLD-1细胞系中PLA2G15敲低的相对细胞增殖;6G:SW480细胞系中ABHD1敲低的相对细胞增殖;6H:SW480细胞系中PLA2G15敲低的相对细胞增殖
图7 ABHD1或PLA2G15敲低后的蛋白表达水平
图8 ABHD1或PLA2G15敲低后对细胞周期实验和集落形成实验的影响。8A:ABHD1或PLA2G15敲低后对DLD-1细胞系细胞周期的影响;8B:ABHD1或PLA2G15敲低后对SW480细胞系细胞周期的影响;8C:ABHD1或PLA2G15敲低对DLD-1细胞系集落形成的影响;8D:ABHD1或PLA2G15敲低对SW480细胞系集落形成的影响
[1]
Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. JNCC, 2022, 2(1): 1-9.
[2]
Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review[J]. JAMA, 2021, 325(7): 669-685.
[3]
Modest DP, Ricard I, Heinemann V, et al. Outcome according to KRAS-, NRAS- and BRAF-mutation as well as KRAS mutation variants: pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group[J]. Ann Oncol, 2016, 27(9): 1746-1753.
[4]
Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349): 409-413.
[5]
Li Q, Wang Y, Wu S, et al. CircACC1 regulates assembly and activation of AMPK complex under metabolic stress[J]. Cell Metab, 2019, 30(1): 157-173.e157.
[6]
Dai W, Xiang W, Han L, et al. PTPRO represses colorectal cancer tumorigenesis and progression by reprogramming fatty acid metabolism[J]. Cancer Commun (Lond), 2022, 42(9): 848-867.
[7]
Gong J, Lin Y, Zhang H, et al. Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells[J]. Cell Death Dis, 2020, 11(4): 267.
[8]
Bacci M, Lorito N, Smiriglia A, et al. Fat and furious: lipid metabolism in antitumoral therapy response and resistance[J]. Trends Cancer, 2021, 7(3): 198-213.
[9]
Butler LM, Perone Y, Dehairs J, et al. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention[J]. Adv Drug Deliv Rev, 2020, 159: 245-293.
[10]
Röhrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer[J]. Nat Rev Cancer, 2016, 16(11): 732-749.
[11]
Zong L, Pi Z, Liu S, et al. Liquid extraction surface analysis nanospray electrospray ionization based lipidomics for in situ analysis of tumor cells with multidrug resistance[J]. Rapid Commun Mass Spectrom, 2018, 32(19): 1683-1692.
[12]
Harayama T, Riezman H. Understanding the diversity of membrane lipid composition[J]. Nat Rev Mol Cell Biol, 2018, 19(5): 281-296.
[13]
Pike LS, Smift AL, Croteau NJ, et al. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells[J]. Biochim Biophys Acta, 2011, 1807(6): 726-734.
[14]
Lee EA, Angka L, Rota SG, et al. Targeting mitochondria with avocatinb induces selective leukemia cell death[J]. Cancer Res, 2015, 75(12): 2478-2488.
[15]
Shao H, Mohamed EM, Xu GG, et al. Carnitine palmitoyltransferase 1A functions to repress FoxO transcription factors to allow cell cycle progression in ovarian cancer[J]. Oncotarget, 2016, 7(4): 3832-3846.
[16]
Holla VR, Wu H, Shi Q, et al. Nuclear orphan receptor NR4A2 modulates fatty acid oxidation pathways in colorectal cancer[J]. J Biol Chem, 2011, 286(34): 30003-30009.
[17]
Ding C, Shan Z, Li M, et al. Characterization of the fatty acid metabolism in colorectal cancer to guide clinical therapy[J]. Mol Ther Oncolytics, 2021, 20: 532-544.
[18]
Wu D, Yang Y, Hou Y, et al. Increased mitochondrial fission drives the reprogramming of fatty acid metabolism in hepatocellular carcinoma cells through suppression of Sirtuin 1[J]. Cancer Commun (Lond), 2022, 42(1): 37-55.
[19]
Longo N, Amat di San Filippo C, Pasquali M. Disorders of carnitine transport and the carnitine cycle[J]. Am J Med Genet C Semin Med Genet, 2006, 142c(2): 77-85.
[20]
Liu F, Li X, Yan H, et al. Downregulation of CPT2 promotes proliferation and inhibits apoptosis through p53 pathway in colorectal cancer[J]. Cell Signal, 2022, 92: 110267.
[21]
Li H, Chen J, Liu J, et al. CPT2 downregulation triggers stemness and oxaliplatin resistance in colorectal cancer via activating the ROS/Wnt/β-catenin-induced glycolytic metabolism[J]. Exp Cell Res, 2021, 409(1): 112892.
[22]
Voloshanenko O, Schwartz U, Kranz D, et al. β-catenin-independent regulation of Wnt target genes by RoR2 and ATF2/ATF4 in colon cancer cells[J]. Sci Rep, 2018, 8(1): 3178.
[23]
Shen C, Song YH, Xie Y, et al. Downregulation of HADH promotes gastric cancer progression via Akt signaling pathway[J]. Oncotarget, 2017, 8(44): 76279-76289.
[24]
Lan C, Wu Y, Wang N, et al. Association between ABHD1 and DOK6 polymorphisms and susceptibility to Hirschsprung disease in Southern Chinese children[J]. J Cell Mol Med, 2021, 25(20): 9609-9616.
[25]
Shayman JA, Tesmer JJG. Lysosomal phospholipase A2[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(6): 932-940.
[26]
Jang JE, Kim HP, Han SW, et al. NFATC3-PLA2G15 fusion transcript identified by RNA sequencing promotes tumor invasion and proliferation in colorectal cancer cell lines[J]. Cancer Res Treat, 2019, 51(1): 391-401.
[1] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[2] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[3] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[4] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[5] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[6] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[7] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[8] 陈樽, 王平, 金华, 周美玲, 李青青, 黄永刚. 肌肉减少症预测结直肠癌术后切口疝发生的应用研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 639-644.
[9] 关小玲, 周文营, 陈洪平. PTAAR在乙肝相关慢加急性肝衰竭患者短期预后中的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 841-845.
[10] 张润锦, 阳盼, 林燕斯, 刘尊龙, 刘建平, 金小岩. EB病毒相关胆管癌伴多发转移一例及国内文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 865-869.
[11] 陈晓鹏, 王佳妮, 练庆海, 杨九妹. 肝细胞癌VOPP1表达及其与预后的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 876-882.
[12] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[13] 刘郁, 段绍斌, 丁志翔, 史志涛. miR-34a-5p 在结肠癌患者的表达及其与临床特征及预后的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 485-490.
[14] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
[15] 郭曌蓉, 王歆光, 刘毅强, 何英剑, 王立泽, 杨飏, 汪星, 曹威, 谷重山, 范铁, 李金锋, 范照青. 不同亚型乳腺叶状肿瘤的临床病理特征及预后危险因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 524-532.
阅读次数
全文


摘要