切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2023, Vol. 12 ›› Issue (03) : 228 -233. doi: 10.3877/cma.j.issn.2095-3224.2023.03.009

综述

血液生物标志物在直肠癌新辅助治疗中的研究进展
侍新宇, 孙金兵, 何宋兵()   
  1. 215006 苏州大学附属第一医院普外科
    215000 苏州大学附属常熟医院 常熟市第一人民医院普外科
  • 收稿日期:2022-11-20 出版日期:2023-06-25
  • 通信作者: 何宋兵
  • 基金资助:
    江苏省自然科学基金(BK20191172); 苏州市医工结合协同创新研究项目(SLJ2021007); 苏州市姑苏卫生重点人才项目(GSWS2020005); 常熟市D类“临床医学专家团队”引进项目(CSYJTD202101)

Progress of blood biomarkers in neoadjuvant chemoradiotherapy of rectal cancer

Xinyu Shi, Jinbing Sun, Songbing He()   

  1. Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
    Department of General Surgery, Changshu No.1 People's Hospital, Affiliated Changshu Hospital of Soochow University, Suzhou 215000, China
  • Received:2022-11-20 Published:2023-06-25
  • Corresponding author: Songbing He
引用本文:

侍新宇, 孙金兵, 何宋兵. 血液生物标志物在直肠癌新辅助治疗中的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(03): 228-233.

Xinyu Shi, Jinbing Sun, Songbing He. Progress of blood biomarkers in neoadjuvant chemoradiotherapy of rectal cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2023, 12(03): 228-233.

目前,结直肠癌的发病率逐年上升,死亡率也位居恶性肿瘤前列。其中,直肠癌所占结直肠癌比例在逐年升高,且多数为局部进展期直肠癌(LARC),预后差。临床上对LARC进行术前新辅助治疗已被广泛认可,而如何精准预测新辅助治疗的疗效一直是学者们关注的热点。近年来,许多学者探索出一些血液生物标志物对新辅助治疗的疗效具有良好的预测能力。回顾直肠癌领域的研究,这些血液生物标志物大致可分为炎症相关的生物标志物、营养相关的生物标志物以及肠道肿瘤标志物三大类。对于这些标志物,不同学者采取了不同的采样时间点,主要包括新辅助治疗前、治疗过程中以及治疗后。本文在既往研究的基础上,对这些血液生物标志物在直肠癌新辅助治疗方面的研究进展进行回顾和总结。

Currently, the incidence of colorectal cancer is increasing year by year, and the mortality rate also ranks among the front of malignant tumors. The proportion of rectal cancer is also increasing year by year, and most of them are locally advanced rectal cancer(LARC) with extremely poor prognosis. Preoperative neoadjuvant therapy for LARC has been widely recognized in clinical practice, and how to accurately predict the efficacy of neoadjuvant therapy has been a hot spot of scholars' attention. In recent years, many scholars have explored that some blood biomarkers have good predictive ability for the efficacy of neoadjuvant therapy. Reviewing the studies in the field of rectal cancer, these blood biomarkers can be broadly divided into three directions: inflammation-related biomarkers, nutrition-related biomarkers, and intestine-specific tumor markers. For these biomarkers, different scholars have adopted different time points for sampling, mainly including before, during and after neoadjuvant therapy. In this paper, we review and summarize the research progress of these blood biomarkers in the neoadjuvant treatment of rectal cancer based on previous studies.

[1]
王红, 曹梦迪, 刘成成, 等. 中国人群结直肠癌疾病负担:近年是否有变?[J]. 中华流行病学杂志, 2020, 41(10): 1633-1642.
[2]
中国抗癌协会, 中国抗癌协会大肠癌专业委员会. 中国恶性肿瘤整合诊治指南-直肠癌部分 [J/OL]. 中华结直肠疾病电子杂志, 2022, 11(2): 89-103.
[3]
van der Valk MJM, Hilling DE, Bastiaannet E, et al. Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study[J]. Lancet, 2018, 391(10139): 2537-2545.
[4]
Park IJ, You YN, Agarwal A, et al. Neoadjuvant treatment response as an early response indicator for patients with rectal cancer [J]. J Clin Oncol, 2012, 30(15): 1770-1776.
[5]
Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation [J]. Nature, 2008, 454(7203): 436-444.
[6]
Mishra A, Liu S, Sams G, et al. Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation [J]. Cancer Cell, 2012, 22(5): 645-655.
[7]
Zitvogel L, Galluzzi L, Smyth MJ, et al. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance [J]. Immunity, 2013, 39(1): 74-88.
[8]
Ko EC, Formenti SC. Radiotherapy and checkpoint inhibitors: a winning new combination? [J]. Ther Adv Med Oncol, 2018, 10: 1758835918768240.
[9]
Teng F, Mu D, Meng X, et al. Tumor infiltrating lymphocytes (TILs) before and after neoadjuvant chemoradiotherapy and its clinical utility for rectal cancer [J]. Am J Cancer Res, 2015, 5(6): 2064.
[10]
Teng F, Meng X, Kong L, et al. Tumor-infiltrating lymphocytes, forkhead box P3, programmed death ligand-1, and cytotoxic T lymphocyte-associated antigen-4 expressions before and after neoadjuvant chemoradiation in rectal cancer [J]. Transl Res, 2015, 166(6): 721-732.
[11]
Heo J, Chun M, Noh OK, et al. Sustaining blood lymphocyte count during preoperative chemoradiotherapy as a predictive marker for pathologic complete response in locally advanced rectal cancer [J]. Cancer Res Treat, 2016, 48(1): 232.
[12]
Tada N, Kawai K, Tsuno NH, et al. Prediction of the preoperative chemoradiotherapy response for rectal cancer by peripheral blood lymphocyte subsets [J]. World J Surg Oncol, 2015, 13(1): 30.
[13]
Heo J, Oh YT, Noh OK, et al. Nodal tumor response according to the count of peripheral blood lymphocyte subpopulations during preoperative chemoradiotherapy in locally advanced rectal cancer [J]. Radiat Oncol J, 2016, 34(4): 305-312.
[14]
Lan HR, Du WL, Liu Y, et al. Role of immune regulatory cells in breast cancer: Foe or friend?[J]. Int Immunopharmacol, 2021, 96(4): 107627.
[15]
Augier S, Ciucci T, Luci C, et al. Inflammatory blood monocytes contribute to tumor development and represent a privileged target to improve host immunosurveillance [J]. J Immunol, 2010, 185(12): 7165-7173.
[16]
Ishikawa D, Nishi M, Takasu C, et al. The role of neutrophil-to-lymphocyte ratio on the effect of CRT for patients with rectal cancer [J]. In Vivo, 2020, 34(2): 863-868.
[17]
Wang Y, Chen L, Zhang B, et al. Pretreatment inflammatory- nutritional biomarkers predict responses to neoadjuvant chemoradiotherapy and survival in locally advanced rectal cancer [J]. Front Oncol, 2021, 11: 479.
[18]
Kim TG, Park W, Kim H, et al. Baseline neutrophil-lymphocyte ratio and platelet-lymphocyte ratio in rectal cancer patients following neoadjuvant chemoradiotherapy [J]. Tumori, 2018, 105(5): 434-440.
[19]
Li A, He K, Guo D, et al. Pretreatment blood biomarkers predict pathologic responses to neo-CRT in patients with locally advanced rectal cancer [J]. Future Oncol, 2019, 15(28): 3233-3242.
[20]
Lee JH, Song C, Kang SB, et al. Predicting pathological complete regression with haematological markers during neoadjuvant chemoradiotherapy for locally advanced rectal cancer [J]. Anticancer Res, 2018, 38(12): 6905-6910.
[21]
Yang J, Xu H, Guo X, et al. Pretreatment inflammatory indexes as prognostic predictors for survival in colorectal cancer patients receiving neoadjuvant chemoradiotherapy [J]. Sci Rep, 2018, 8(1): 3044.
[22]
Abe S, Kawai K, Nozawa H, et al. LMR predicts outcome in patients after preoperative chemoradiotherapy for stage II-III rectal cancer [J]. J Surg Res, 2018, 222: 122-131.
[23]
Deng YX, Lin JZ, Peng JH, et al. Lymphocyte-to-monocyte ratio before chemoradiotherapy represents a prognostic predictor for locally advanced rectal cancer [J]. Onco Targets Ther, 2017, 10: 5575-5583.
[24]
Chen L, Kong X, Wang Z, et al. Pre-treatment systemic immune-inflammation index is a useful prognostic indicator in patients with breast cancer undergoing neoadjuvant chemotherapy [J]. J Cell Mol Med, 2020, 24(5): 2993-3021.
[25]
Murthy P, Zenati MS, Abbas A, et al. Prognostic value of the systemic immune-inflammation index (SII) after neoadjuvant therapy for patients with resected pancreatic cancer [J]. Ann Surg Oncol, 2019, 27(3): 898-906.
[26]
Jomrich G, Paireder M, Kristo I, et al. High systemic immune-inflammation index is an adverse prognostic factor for patients with gastroesophageal adenocarcinoma [J]. Ann Surg, 2021, 273(3): 532-541.
[27]
Jiang C, Lu Y, Zhang S, et al. Systemic immune-inflammation index is superior to neutrophil to lymphocyte ratio in prognostic assessment of breast cancer patients undergoing neoadjuvant chemotherapy [J]. Biomed Res Int, 2020, 2020(4): 1-10.
[28]
Sun Y, Huang Z, Chi P. An inflammation index-based prediction of treatment response to neoadjuvant chemoradiotherapy for rectal mucinous adenocarcinoma [J]. Int J Clin Oncol, 2020, 25(486-492): 1-9.
[29]
Eraslan E, Adas YG, Yildiz F, et al. Systemic immune-inflammation index (SII) predicts pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer [J]. J Coll Physicians Surg Pak, 2021, 30(4): 399-404.
[30]
Haskins IN, Baginsky M, Amdur RL, et al. Preoperative hypoalbuminemia is associated with worse outcomes in colon cancer patients [J]. Clin Nutr, 2017, 36(5): 1333-1338.
[31]
Gupta D, Lis CG. Pretreatment serum albumin as a predictor of cancer survival: A systematic review of the epidemiological literature [J]. Nutr J, 2010, 9(1): 1-16.
[32]
Chen S, Nie RC, Ouyang LY, et al. Body mass index (BMI) may be a prognostic factor for gastric cancer with peritoneal dissemination [J]. World J Surg Oncol, 2017, 15(1): 52.
[33]
Ejaz A, Spolverato G, Kim Y, et al. Impact of body mass index on perioperative outcomes and survival after resection for gastric cancer[J]. J Surg Res, 2015, 195(1): 74-82.
[34]
Uratani R, Toiyama Y, Shimura T, et al. Preoperative lower body mass index correlates with poorer prognosis in patients undergoing curative laparoscopic surgery for colorectal cancer [J]. Anticancer Res, 2015, 35(10): 5639-5648.
[35]
Chiang JM, Chang CJ, Jiang SF, et al. Pre-operative serum albumin level substantially predicts post-operative morbidity and mortality among patients with colorectal cancer who undergo elective colectomy [J]. Eur J Cancer Care, 2017, 26(2):10.1111/ecc.12403.
[36]
Yamana I, Takeno S, Shimaoka H, et al. Geriatric nutritional risk index as a prognostic factor in patients with esophageal squamous cell carcinoma -retrospective cohort study [J]. Int J Surg, 2018, 56: 44-48.
[37]
Kubo N, Sakurai K, Tamura T, et al. The impact of geriatric nutritional risk index on surgical outcomes after esophagectomy in patients with esophageal cancer [J]. Esophagus, 2019, 16(2): 147-154.
[38]
Sasaki M, Miyoshi N, Fujino S, et al. The geriatric nutritional risk index predicts postoperative complications and prognosis in elderly patients with colorectal cancer after curative surgery [J]. Sci Rep, 2020, 10(1): 10744.
[39]
Haruaki H, Tomohito S, Hiroshi M, et al. Utility of geriatric nutritional risk index in patients with lung cancer undergoing surgery [J]. Eur J Cardiothorac Surg, 2020, 58(4): 775-782.
[40]
Ide S, Okugawa Y, Omura Y, et al. Geriatric nutritional risk index predicts cancer prognosis in patients with local advanced rectal cancer undergoing chemoradiotherapy followed by curative surgery [J]. World J Surg Oncol, 2021, 19(1):34.
[41]
Lee-Rueckert M, Escola-Gil JC, Kovanen PT. HDL functionality in reverse cholesterol transport—Challenges in translating data emerging from mouse models to human disease [J]. Biochim Biophys Acta, 2016, 1861(7): 566-583.
[42]
Zamanian-Daryoush M, Lindner D, Tallant TC, et al. The cardioprotective protein apolipoprotein A1 promotes potent anti-tumorigenic effects [J]. J Biol Chem, 2013, 288(29): 21237-21252.
[43]
Ben Hassen C, Gutierrez-Pajares JL, Guimaraes C, et al. Apolipoprotein-mediated regulation of lipid metabolism induces distinctive effects in different types of breast cancer cells [J]. Breast Cancer Res, 2020, 22(1): 38.
[44]
Guo SP, Chen C, Zeng ZF, et al. Serum apolipoprotein A-I predicts response of rectal cancer to neoadjuvant chemoradiotherapy [J]. Cancer Manag Res, 2021, 13: 2623-2631.
[45]
Kakuda H, Matoba M, Nakatoh H, et al. Effects of change in high-density lipoprotein cholesterol by statin switching on glucose metabolism and renal function in hypercholesterolemia [J]. J Clin Lipidol, 2015, 9(5): 709-715.
[46]
Pang J, Chan DC, Hamilton SJ, et al. Effect of niacin on high-density lipoprotein apolipoprotein A-I kinetics in statin-treated patients with type 2 diabetes mellitus [J]. Arterioscler Thromb Vasc Biol, 2014, 34(2): 427-432.
[47]
Karagkounis G, DeVecchio J, Ferrandon S, et al. Simvastatin enhances radiation sensitivity of colorectal cancer cells [J]. Surg Endosc, 2018, 32(3): 1533-1539.
[48]
Moureau-Zabotto L, Farnault B, de Chaisemartin C, et al. Predictive factors of tumor response after neoadjuvant chemoradiation for locally advanced rectal cancer [J]. Int J Radiat Oncol Biol Phys, 2011, 80(2): 483-491.
[49]
Tan Y, Fu D, Li D, et al. Predictors and risk factors of pathologic complete response following neoadjuvant chemoradiotherapy for rectal cancer: a population-based analysis [J]. Front Oncol, 2019, 9: 497.
[50]
Zheng Z, Wang X, Huang Y, et al. Predictive value of changes in the level of carbohydrate antigen 19-9 in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy [J]. Colorectal Dis, 2020, 22(12): 2068-2077.
[51]
Song J, Huang X, Chen Z, et al. Predictive value of carcinoembryonic antigen and carbohydrate antigen 19-9 related to downstaging to stage 0-I after neoadjuvant chemoradiotherapy in locally advanced rectal cancer [J]. Cancer Manag Res, 2018, 10: 3101-3108.
[52]
Deng HY, Zhu XQ, Ding YY, et al. Multislice spiral CT images combined with CEA and lymphocyte-to-neutrophil ratio predict recurrence and post-operative metastasis of rectal cancer [J]. Mol Cell Probes, 2020, 50: 101502.
[53]
Lu S, Liu Z, Wang B, et al. High CFP score indicates poor prognosis and chemoradiotherapy response in LARC patients [J]. Cancer Cell Int, 2021, 21(1): 205.
[54]
Yoo GS, Park HC, Yu JI, et al. Carcinoembryonic antigen improves the performance of magnetic resonance imaging in the prediction of pathologic response after neoadjuvant chemoradiation for patients with rectal cancer [J]. Cancer Res Treat, 2020, 52(2): 446-454.
[55]
Liu Y, Zhang FJ, Zhao XX, et al. Development of a joint prediction model based on both the radiomics and clinical factors for predicting the tumor response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer [J]. Cancer Manag Res, 2021, 13: 3235-3246.
[56]
Cheng Y, Luo Y, Hu Y, et al. Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer [J]. Abdom Radiol, 2021, 46(11): 5072-5085.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[5] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[6] 张焱辉, 张蛟, 朱志贤. 留置肛管在中低位直肠癌新辅助放化疗后腹腔镜TME术中的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 25-28.
[7] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[8] 付振保, 曹万龙, 刘富红. 腹腔镜直肠癌低位前切除术中不同缝合方法的回肠双腔造口术临床效果研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 684-687.
[9] 贺亮, 王松林, 周业江. 两种预防性回肠造口在腹腔镜ISR术治疗超低位直肠癌的效果对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 697-700.
[10] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[11] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[12] 杨红杰, 张智春, 孙轶. 直肠癌淋巴结转移诊断研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 512-518.
[13] 马慧颖, 凡新苓, 覃仕瑞, 陈佳赟, 曹莹, 徐源, 金晶, 唐源. 磁共振加速器治疗局部晚期直肠癌的初步经验[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 519-523.
[14] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[15] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
阅读次数
全文


摘要