切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2023, Vol. 12 ›› Issue (03) : 228 -233. doi: 10.3877/cma.j.issn.2095-3224.2023.03.009

综述

血液生物标志物在直肠癌新辅助治疗中的研究进展
侍新宇, 孙金兵, 何宋兵()   
  1. 215006 苏州大学附属第一医院普外科
    215000 苏州大学附属常熟医院 常熟市第一人民医院普外科
  • 收稿日期:2022-11-20 出版日期:2023-06-25
  • 通信作者: 何宋兵
  • 基金资助:
    江苏省自然科学基金(BK20191172); 苏州市医工结合协同创新研究项目(SLJ2021007); 苏州市姑苏卫生重点人才项目(GSWS2020005); 常熟市D类“临床医学专家团队”引进项目(CSYJTD202101)

Progress of blood biomarkers in neoadjuvant chemoradiotherapy of rectal cancer

Xinyu Shi, Jinbing Sun, Songbing He()   

  1. Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
    Department of General Surgery, Changshu No.1 People's Hospital, Affiliated Changshu Hospital of Soochow University, Suzhou 215000, China
  • Received:2022-11-20 Published:2023-06-25
  • Corresponding author: Songbing He
引用本文:

侍新宇, 孙金兵, 何宋兵. 血液生物标志物在直肠癌新辅助治疗中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2023, 12(03): 228-233.

Xinyu Shi, Jinbing Sun, Songbing He. Progress of blood biomarkers in neoadjuvant chemoradiotherapy of rectal cancer[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2023, 12(03): 228-233.

目前,结直肠癌的发病率逐年上升,死亡率也位居恶性肿瘤前列。其中,直肠癌所占结直肠癌比例在逐年升高,且多数为局部进展期直肠癌(LARC),预后差。临床上对LARC进行术前新辅助治疗已被广泛认可,而如何精准预测新辅助治疗的疗效一直是学者们关注的热点。近年来,许多学者探索出一些血液生物标志物对新辅助治疗的疗效具有良好的预测能力。回顾直肠癌领域的研究,这些血液生物标志物大致可分为炎症相关的生物标志物、营养相关的生物标志物以及肠道肿瘤标志物三大类。对于这些标志物,不同学者采取了不同的采样时间点,主要包括新辅助治疗前、治疗过程中以及治疗后。本文在既往研究的基础上,对这些血液生物标志物在直肠癌新辅助治疗方面的研究进展进行回顾和总结。

Currently, the incidence of colorectal cancer is increasing year by year, and the mortality rate also ranks among the front of malignant tumors. The proportion of rectal cancer is also increasing year by year, and most of them are locally advanced rectal cancer(LARC) with extremely poor prognosis. Preoperative neoadjuvant therapy for LARC has been widely recognized in clinical practice, and how to accurately predict the efficacy of neoadjuvant therapy has been a hot spot of scholars' attention. In recent years, many scholars have explored that some blood biomarkers have good predictive ability for the efficacy of neoadjuvant therapy. Reviewing the studies in the field of rectal cancer, these blood biomarkers can be broadly divided into three directions: inflammation-related biomarkers, nutrition-related biomarkers, and intestine-specific tumor markers. For these biomarkers, different scholars have adopted different time points for sampling, mainly including before, during and after neoadjuvant therapy. In this paper, we review and summarize the research progress of these blood biomarkers in the neoadjuvant treatment of rectal cancer based on previous studies.

[1]
王红, 曹梦迪, 刘成成, 等. 中国人群结直肠癌疾病负担:近年是否有变?[J]. 中华流行病学杂志, 2020, 41(10): 1633-1642.
[2]
中国抗癌协会, 中国抗癌协会大肠癌专业委员会. 中国恶性肿瘤整合诊治指南-直肠癌部分 [J/OL]. 中华结直肠疾病电子杂志, 2022, 11(2): 89-103.
[3]
van der Valk MJM, Hilling DE, Bastiaannet E, et al. Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study[J]. Lancet, 2018, 391(10139): 2537-2545.
[4]
Park IJ, You YN, Agarwal A, et al. Neoadjuvant treatment response as an early response indicator for patients with rectal cancer [J]. J Clin Oncol, 2012, 30(15): 1770-1776.
[5]
Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation [J]. Nature, 2008, 454(7203): 436-444.
[6]
Mishra A, Liu S, Sams G, et al. Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation [J]. Cancer Cell, 2012, 22(5): 645-655.
[7]
Zitvogel L, Galluzzi L, Smyth MJ, et al. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance [J]. Immunity, 2013, 39(1): 74-88.
[8]
Ko EC, Formenti SC. Radiotherapy and checkpoint inhibitors: a winning new combination? [J]. Ther Adv Med Oncol, 2018, 10: 1758835918768240.
[9]
Teng F, Mu D, Meng X, et al. Tumor infiltrating lymphocytes (TILs) before and after neoadjuvant chemoradiotherapy and its clinical utility for rectal cancer [J]. Am J Cancer Res, 2015, 5(6): 2064.
[10]
Teng F, Meng X, Kong L, et al. Tumor-infiltrating lymphocytes, forkhead box P3, programmed death ligand-1, and cytotoxic T lymphocyte-associated antigen-4 expressions before and after neoadjuvant chemoradiation in rectal cancer [J]. Transl Res, 2015, 166(6): 721-732.
[11]
Heo J, Chun M, Noh OK, et al. Sustaining blood lymphocyte count during preoperative chemoradiotherapy as a predictive marker for pathologic complete response in locally advanced rectal cancer [J]. Cancer Res Treat, 2016, 48(1): 232.
[12]
Tada N, Kawai K, Tsuno NH, et al. Prediction of the preoperative chemoradiotherapy response for rectal cancer by peripheral blood lymphocyte subsets [J]. World J Surg Oncol, 2015, 13(1): 30.
[13]
Heo J, Oh YT, Noh OK, et al. Nodal tumor response according to the count of peripheral blood lymphocyte subpopulations during preoperative chemoradiotherapy in locally advanced rectal cancer [J]. Radiat Oncol J, 2016, 34(4): 305-312.
[14]
Lan HR, Du WL, Liu Y, et al. Role of immune regulatory cells in breast cancer: Foe or friend?[J]. Int Immunopharmacol, 2021, 96(4): 107627.
[15]
Augier S, Ciucci T, Luci C, et al. Inflammatory blood monocytes contribute to tumor development and represent a privileged target to improve host immunosurveillance [J]. J Immunol, 2010, 185(12): 7165-7173.
[16]
Ishikawa D, Nishi M, Takasu C, et al. The role of neutrophil-to-lymphocyte ratio on the effect of CRT for patients with rectal cancer [J]. In Vivo, 2020, 34(2): 863-868.
[17]
Wang Y, Chen L, Zhang B, et al. Pretreatment inflammatory- nutritional biomarkers predict responses to neoadjuvant chemoradiotherapy and survival in locally advanced rectal cancer [J]. Front Oncol, 2021, 11: 479.
[18]
Kim TG, Park W, Kim H, et al. Baseline neutrophil-lymphocyte ratio and platelet-lymphocyte ratio in rectal cancer patients following neoadjuvant chemoradiotherapy [J]. Tumori, 2018, 105(5): 434-440.
[19]
Li A, He K, Guo D, et al. Pretreatment blood biomarkers predict pathologic responses to neo-CRT in patients with locally advanced rectal cancer [J]. Future Oncol, 2019, 15(28): 3233-3242.
[20]
Lee JH, Song C, Kang SB, et al. Predicting pathological complete regression with haematological markers during neoadjuvant chemoradiotherapy for locally advanced rectal cancer [J]. Anticancer Res, 2018, 38(12): 6905-6910.
[21]
Yang J, Xu H, Guo X, et al. Pretreatment inflammatory indexes as prognostic predictors for survival in colorectal cancer patients receiving neoadjuvant chemoradiotherapy [J]. Sci Rep, 2018, 8(1): 3044.
[22]
Abe S, Kawai K, Nozawa H, et al. LMR predicts outcome in patients after preoperative chemoradiotherapy for stage II-III rectal cancer [J]. J Surg Res, 2018, 222: 122-131.
[23]
Deng YX, Lin JZ, Peng JH, et al. Lymphocyte-to-monocyte ratio before chemoradiotherapy represents a prognostic predictor for locally advanced rectal cancer [J]. Onco Targets Ther, 2017, 10: 5575-5583.
[24]
Chen L, Kong X, Wang Z, et al. Pre-treatment systemic immune-inflammation index is a useful prognostic indicator in patients with breast cancer undergoing neoadjuvant chemotherapy [J]. J Cell Mol Med, 2020, 24(5): 2993-3021.
[25]
Murthy P, Zenati MS, Abbas A, et al. Prognostic value of the systemic immune-inflammation index (SII) after neoadjuvant therapy for patients with resected pancreatic cancer [J]. Ann Surg Oncol, 2019, 27(3): 898-906.
[26]
Jomrich G, Paireder M, Kristo I, et al. High systemic immune-inflammation index is an adverse prognostic factor for patients with gastroesophageal adenocarcinoma [J]. Ann Surg, 2021, 273(3): 532-541.
[27]
Jiang C, Lu Y, Zhang S, et al. Systemic immune-inflammation index is superior to neutrophil to lymphocyte ratio in prognostic assessment of breast cancer patients undergoing neoadjuvant chemotherapy [J]. Biomed Res Int, 2020, 2020(4): 1-10.
[28]
Sun Y, Huang Z, Chi P. An inflammation index-based prediction of treatment response to neoadjuvant chemoradiotherapy for rectal mucinous adenocarcinoma [J]. Int J Clin Oncol, 2020, 25(486-492): 1-9.
[29]
Eraslan E, Adas YG, Yildiz F, et al. Systemic immune-inflammation index (SII) predicts pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer [J]. J Coll Physicians Surg Pak, 2021, 30(4): 399-404.
[30]
Haskins IN, Baginsky M, Amdur RL, et al. Preoperative hypoalbuminemia is associated with worse outcomes in colon cancer patients [J]. Clin Nutr, 2017, 36(5): 1333-1338.
[31]
Gupta D, Lis CG. Pretreatment serum albumin as a predictor of cancer survival: A systematic review of the epidemiological literature [J]. Nutr J, 2010, 9(1): 1-16.
[32]
Chen S, Nie RC, Ouyang LY, et al. Body mass index (BMI) may be a prognostic factor for gastric cancer with peritoneal dissemination [J]. World J Surg Oncol, 2017, 15(1): 52.
[33]
Ejaz A, Spolverato G, Kim Y, et al. Impact of body mass index on perioperative outcomes and survival after resection for gastric cancer[J]. J Surg Res, 2015, 195(1): 74-82.
[34]
Uratani R, Toiyama Y, Shimura T, et al. Preoperative lower body mass index correlates with poorer prognosis in patients undergoing curative laparoscopic surgery for colorectal cancer [J]. Anticancer Res, 2015, 35(10): 5639-5648.
[35]
Chiang JM, Chang CJ, Jiang SF, et al. Pre-operative serum albumin level substantially predicts post-operative morbidity and mortality among patients with colorectal cancer who undergo elective colectomy [J]. Eur J Cancer Care, 2017, 26(2):10.1111/ecc.12403.
[36]
Yamana I, Takeno S, Shimaoka H, et al. Geriatric nutritional risk index as a prognostic factor in patients with esophageal squamous cell carcinoma -retrospective cohort study [J]. Int J Surg, 2018, 56: 44-48.
[37]
Kubo N, Sakurai K, Tamura T, et al. The impact of geriatric nutritional risk index on surgical outcomes after esophagectomy in patients with esophageal cancer [J]. Esophagus, 2019, 16(2): 147-154.
[38]
Sasaki M, Miyoshi N, Fujino S, et al. The geriatric nutritional risk index predicts postoperative complications and prognosis in elderly patients with colorectal cancer after curative surgery [J]. Sci Rep, 2020, 10(1): 10744.
[39]
Haruaki H, Tomohito S, Hiroshi M, et al. Utility of geriatric nutritional risk index in patients with lung cancer undergoing surgery [J]. Eur J Cardiothorac Surg, 2020, 58(4): 775-782.
[40]
Ide S, Okugawa Y, Omura Y, et al. Geriatric nutritional risk index predicts cancer prognosis in patients with local advanced rectal cancer undergoing chemoradiotherapy followed by curative surgery [J]. World J Surg Oncol, 2021, 19(1):34.
[41]
Lee-Rueckert M, Escola-Gil JC, Kovanen PT. HDL functionality in reverse cholesterol transport—Challenges in translating data emerging from mouse models to human disease [J]. Biochim Biophys Acta, 2016, 1861(7): 566-583.
[42]
Zamanian-Daryoush M, Lindner D, Tallant TC, et al. The cardioprotective protein apolipoprotein A1 promotes potent anti-tumorigenic effects [J]. J Biol Chem, 2013, 288(29): 21237-21252.
[43]
Ben Hassen C, Gutierrez-Pajares JL, Guimaraes C, et al. Apolipoprotein-mediated regulation of lipid metabolism induces distinctive effects in different types of breast cancer cells [J]. Breast Cancer Res, 2020, 22(1): 38.
[44]
Guo SP, Chen C, Zeng ZF, et al. Serum apolipoprotein A-I predicts response of rectal cancer to neoadjuvant chemoradiotherapy [J]. Cancer Manag Res, 2021, 13: 2623-2631.
[45]
Kakuda H, Matoba M, Nakatoh H, et al. Effects of change in high-density lipoprotein cholesterol by statin switching on glucose metabolism and renal function in hypercholesterolemia [J]. J Clin Lipidol, 2015, 9(5): 709-715.
[46]
Pang J, Chan DC, Hamilton SJ, et al. Effect of niacin on high-density lipoprotein apolipoprotein A-I kinetics in statin-treated patients with type 2 diabetes mellitus [J]. Arterioscler Thromb Vasc Biol, 2014, 34(2): 427-432.
[47]
Karagkounis G, DeVecchio J, Ferrandon S, et al. Simvastatin enhances radiation sensitivity of colorectal cancer cells [J]. Surg Endosc, 2018, 32(3): 1533-1539.
[48]
Moureau-Zabotto L, Farnault B, de Chaisemartin C, et al. Predictive factors of tumor response after neoadjuvant chemoradiation for locally advanced rectal cancer [J]. Int J Radiat Oncol Biol Phys, 2011, 80(2): 483-491.
[49]
Tan Y, Fu D, Li D, et al. Predictors and risk factors of pathologic complete response following neoadjuvant chemoradiotherapy for rectal cancer: a population-based analysis [J]. Front Oncol, 2019, 9: 497.
[50]
Zheng Z, Wang X, Huang Y, et al. Predictive value of changes in the level of carbohydrate antigen 19-9 in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy [J]. Colorectal Dis, 2020, 22(12): 2068-2077.
[51]
Song J, Huang X, Chen Z, et al. Predictive value of carcinoembryonic antigen and carbohydrate antigen 19-9 related to downstaging to stage 0-I after neoadjuvant chemoradiotherapy in locally advanced rectal cancer [J]. Cancer Manag Res, 2018, 10: 3101-3108.
[52]
Deng HY, Zhu XQ, Ding YY, et al. Multislice spiral CT images combined with CEA and lymphocyte-to-neutrophil ratio predict recurrence and post-operative metastasis of rectal cancer [J]. Mol Cell Probes, 2020, 50: 101502.
[53]
Lu S, Liu Z, Wang B, et al. High CFP score indicates poor prognosis and chemoradiotherapy response in LARC patients [J]. Cancer Cell Int, 2021, 21(1): 205.
[54]
Yoo GS, Park HC, Yu JI, et al. Carcinoembryonic antigen improves the performance of magnetic resonance imaging in the prediction of pathologic response after neoadjuvant chemoradiation for patients with rectal cancer [J]. Cancer Res Treat, 2020, 52(2): 446-454.
[55]
Liu Y, Zhang FJ, Zhao XX, et al. Development of a joint prediction model based on both the radiomics and clinical factors for predicting the tumor response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer [J]. Cancer Manag Res, 2021, 13: 3235-3246.
[56]
Cheng Y, Luo Y, Hu Y, et al. Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer [J]. Abdom Radiol, 2021, 46(11): 5072-5085.
[1] 王振宁, 杨康, 王得晨, 邹敏, 归明彬, 王雅楠, 徐明. 机器人与腹腔镜手术联合经自然腔道取标本对中低位直肠癌患者远期疗效比较[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 437-442.
[2] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[3] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[4] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[5] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[6] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[7] 庄宝雄, 邓海军. 单孔+1腹腔镜直肠癌侧方淋巴结清扫术[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 601-601.
[8] 郑民华, 蒋天宇, 赵轩, 马君俊. 中国腹腔镜直肠癌根治术30年发展历程与未来[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 591-595.
[9] 池畔, 黄胜辉. 中国腹腔镜直肠癌根治术30年来的巨大进步[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 596-600.
[10] 李明, 屠松, 闫鹏, 钱军, 高鹏程, 许文山, 杨发英, 胡振涛, 单永玮. 应用前列腺电切镜引导置管治疗直肠低位吻合口漏研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 603-606.
[11] 李玲, 刘亚, 李培玲, 张秀敏, 李萍. 直肠癌患者术后肠道菌群的变化与抑郁症相关性研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 607-610.
[12] 赵梓竣, 兰运升. 改良一针法末端回肠造口术对低位直肠癌保肛术后应激反应及安全性的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 611-614.
[13] 吴胜伟, 王志伟, 陈贵进, 刘序, 吴晓翔. 系膜肥厚低位直肠癌患者改良NOSES Ⅰ式手术的临床效果评价[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 615-618.
[14] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[15] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
阅读次数
全文


摘要