切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2022, Vol. 11 ›› Issue (02) : 154 -157. doi: 10.3877/cma.j.issn.2095-3224.2022.02.010

综述

人工智能辅助结肠镜检查在下消化道病变的应用进展
陈冰虹1, 伍海锐2,(), 柯岩2, 张玮3, 王贵齐2,()   
  1. 1. 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院内镜科;518116 国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院深圳医院内镜科
    2. 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院内镜科
    3. 518116 国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院深圳医院内镜科
  • 收稿日期:2022-01-24 出版日期:2022-04-25
  • 通信作者: 伍海锐, 王贵齐
  • 基金资助:
    国家重点研发计划(2016YFC1302800,2016YFC0901402,2018YFC1313103); 深圳市医疗卫生三名工程项目(SZSM201911008)

Application and progress of artificial intelligence-assisted colonoscopy in the examination of lower digestive tract diseases

Binghong Chen1, Hairui Wu2,(), Yan Ke2, Wei Zhang3, Guiqi Wang2,()   

  1. 1. Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China;Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
    2. Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
    3. Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
  • Received:2022-01-24 Published:2022-04-25
  • Corresponding author: Hairui Wu, Guiqi Wang
引用本文:

陈冰虹, 伍海锐, 柯岩, 张玮, 王贵齐. 人工智能辅助结肠镜检查在下消化道病变的应用进展[J/OL]. 中华结直肠疾病电子杂志, 2022, 11(02): 154-157.

Binghong Chen, Hairui Wu, Yan Ke, Wei Zhang, Guiqi Wang. Application and progress of artificial intelligence-assisted colonoscopy in the examination of lower digestive tract diseases[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2022, 11(02): 154-157.

随着我国科技的进步及人民生活质量的逐渐提高,结直肠癌已跃升为前五高发的癌症,严重影响人民的健康及预期寿命。结直肠癌的形成需要一个很漫长的过程,因此,早发现、早诊断及早治疗极其重要,其中规范化的结肠镜检查是发现早期结直肠癌最有效的方法。近年来,人工智能辅助消化内镜检查正成为研究的热点,其应用在结直肠癌早诊早治方面有明显的成效。本文就人工智能辅助结肠镜检查的优缺点及存在的问题进行综述,并对未来人工智能辅助内镜诊断结直肠癌中的应用方向进行展望。

With the advancement of technology and the gradual improvement of people's quality of life, colorectal cancer has become to the top five high prevalent cancer, seriously affecting people's health and life expectancy. Since the formation of colorectal cancer requires a very long process, therefore, early detection, early diagnosis and early treatment are extremely important, among which standardized colonoscopy is the most effective method to detect early-staged colorectal cancer. Recently, artificial intelligence (AI) assisted gastrointestinal endoscopy is becoming one of the hot research topics, among which the application has obvious effectiveness in early diagnosis and treatment of colorectal cancer. This manuscript reviews the advantages, disadvantages and the potential problems of AI-assisted colonoscopy, and provides an outlook on the future application direction in AI-assisted endoscopic diagnosis of colorectal cancer.

[1]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[2]
Zauber AG, Winawer SJ, O'Brien MJ, et al. Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths[J]. N Engl J Med, 2012, 366(8): 687-696.
[3]
Nishihara R, Wu K, Lochhead P, et al. Long-term colorectal-cancer incidence and mortality after lower endoscopy[J]. N Engl J Med, 2013, 369(12): 1095-1105.
[4]
Pilonis ND, Bugajski M, Wieszczy P, et al. Long-term colorectal cancer incidence and mortality after a single negative screening colonoscopy[J]. Ann Intern Med, 2020, 173(2): 81-91.
[5]
Zhao S, Wang S, Pan P, et al. Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis[J]. Gastroenterology, 2019, 156(6): 1661-1674.
[6]
Goyal H, Mann R, Gandhi Z, et al. Scope of artificial intelligence in screening and diagnosis of colorectal cancer[J]. J Clin Med, 2020, 9(10): 3313.
[7]
Yao L, Zhang L, Liu J, et al. Effect of an artificial intelligence-based quality improvement system on efficacy of a computer-aided detection system in colonoscopy: a four-group parallel study[J]. Endoscopy, 2021, Nov 25.
[8]
Veitch AM, Uedo N, Yao K, et al. Optimizing early upper gastrointestinal cancer detection at endoscopy[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(11): 660-667.
[9]
van der Sommen F, Zinger S, Curvers WL, et al. Computer-aided detection of early neoplastic lesions in Barrett's esophagus[J]. Endoscopy, 2016, 48(7): 617-624.
[10]
Urban G, Tripathi P, Alkayali T, et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy[J]. Gastroenterology, 2018, 155(4): 1069-1078.
[11]
Yang YJ, Bang CS. Application of artificial intelligence in gastroenterology[J]. World J Gastroenterol, 2019, 25(14): 1666-1683.
[12]
Ruffle JK, Farmer AD, Aziz Q. Artificial intelligence-assisted gastroenterology- promises and pitfalls[J]. Am J Gastroenterol, 2019, 114(3): 422-428.
[13]
Ahmad OF, Soares AS, Mazomenos E, et al. Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions[J]. Lancet Gastroenterol Hepatol, 2019, 4(1): 71-80.
[14]
Horie Y, Yoshio T, Aoyama K, et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks[J]. Gastrointest Endosc, 2019, 89(1): 25-32.
[15]
Cai SL, Li B, Tan WM, et al. Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video)[J]. Gastrointest Endosc, 2019, 90(5): 745-753.
[16]
de Groof AJ, Struyvenberg MR, van der Putten J, et al. Deep-learning system detects neoplasia in patients with barrett's esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking[J]. Gastroenterology, 2020, 158(4): 915-929.
[17]
Guo L, Xiao X, Wu C, et al. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos)[J]. Gastrointest Endosc, 2020, 91(1): 41-51.
[18]
Tokai Y, Yoshio T, Aoyama K, et al. Application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma[J]. Esophagus, 2020, 17(3): 250-256.
[19]
Nakagawa K, Ishihara R, Aoyama K, et al. Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists[J]. Gastrointest Endosc, 2019, 90(3): 407-414.
[20]
王智杰, 高杰, 孟茜茜, 等. 基于深度学习的人工智能技术在早期胃癌诊断中的应用[J]. 中华消化内镜杂志, 2018, 35(8): 551-556.
[21]
Kanesaka T, Lee TC, Uedo N, et al. Computer-aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow-band imaging[J]. Gastrointest Endosc, 2018, 87(5): 1339-1344.
[22]
Shichijo S, Nomura S, Aoyama K, et al. Application of convolutional neural networks in the diagnosis of helicobacter pylori infection based on endoscopic images[J]. E Bio Medicine, 2017, 25: 106-111.
[23]
Zhou T, Han G, Li BN, et al. Quantitative analysis of patients with celiac disease by video capsule endoscopy: A deep learning method[J]. Comput Biol Med, 2017: 851-856.
[24]
Dimas G, Spyrou E, Iakovidis DK, et al. Intelligent visual localization of wireless capsule endoscopes enhanced by color information[J]. Comput Biol Med, 2017, 89: 429-440.
[25]
Froehlich F, Wietlisbach V, Gonvers JJ, et al. Impact of colonic cleansing on quality and diagnostic yield of colonoscopy: the European panel of appropriateness of gastrointestinal endoscopy European multicenter study[J]. Gastrointest Endosc, 2005, 61(3): 378-384.
[26]
Su JR, Li Z, Shao XJ, et al. Impact of a real-time automatic quality control system on colorectal polyp and adenoma detection: a prospective randomized controlled study (with videos)[J]. Gastrointest Endosc, 2020, 91(2): 415-424.
[27]
Lee JY, Calderwood AH, Karnes W, et al. Artificial intelligence for the assessment of bowel preparation[J]. Gastrointest Endosc, 2022, 95(3): 512-518.
[28]
Zhou J, Wu L, Wan X, et al. A novel artificial intelligence system for the assessment of bowel preparation (with video)[J]. Gastrointest Endosc, 2020, 91(2): 428-435.
[29]
Rembacken B, Hassan C, Riemann JF, et al. Quality in screening colonoscopy: position statement of the European Society of Gastrointestinal Endoscopy (ESGE)[J]. Endoscopy, 2012, 44(10): 957-968.
[30]
Gong D, Wu L, Zhang J, et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study[J]. Lancet Gastroenterol Hepatol, 2020, 5(4): 352-361.
[31]
Haj-Hassan H, Chaddad A, Harkouss Y, et al. Classifications of multispectral colorectal cancer tissues using convolution neural network[J]. J Pathol Inform, 2017, (8): 1.
[32]
Endoscopic Classification Review Group. Update on the paris classification of superficial neoplastic lesions in the digestive tract[J]. Endoscopy, 2005, 37(6): 570-578.
[33]
Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study[J]. Gut, 2019, 68(10): 1813-1819.
[34]
Wang P, Liu P, Glissen Brown JR, et al. Lower adenoma miss rate of computer-aided detection-assisted colonoscopy vs routine white-light colonoscopy in a prospective tandem study[J]. Gastroenterology, 2020, 159(4): 1252-1261.
[35]
Repici A, Badalamenti M, Maselli R, et al. Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial[J]. Gastroenterology, 2020, 159(2): 512-520.
[36]
Zhao SB, Yang W, Wang SL, et al. Establishment and validation of a computer-assisted colonic polyp localization system based on deep learning[J]. World J Gastroenterol, 2021, 27(31): 5232-5246.
[37]
Yamada M, Saito Y, Imaoka H, et al. Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy[J]. Sci Rep, 2019, 9(1): 14465.
[38]
Tong Y, Lu K, Yang Y, et al. Can natural language processing help differentiate inflammatory intestinal diseases in China? Models applying random forest and convolutional neural network approaches[J]. BMC Med Inform Decis Mak, 2020, 20(1): 248.
[39]
Takemura Y, Yoshida S, Tanaka S, et al. Computer-aided system for predicting the histology of colorectal tumors by using narrow-band imaging magnifying colonoscopy (with video)[J]. Gastrointest Endosc, 2012, 75(1): 179-185.
[40]
Takemura Y, Yoshida S, Tanaka S, et al. Quantitative analysis and development of a computer-aided system for identification of regular pit patterns of colorectal lesions[J]. Gastrointest Endosc, 2010, 72(5): 1047-1051.
[41]
He J, Baxter SL, Xu J, et al. The practical implementation of artificial intelligence technologies in medicine[J]. Nat Med, 2019, 25(1): 30-36.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 罗刚, 泮思林, 孙玲玉, 李志新, 陈涛涛, 乔思波, 庞善臣. 一种新型语义网络分析模型对室间隔完整型肺动脉闭锁和危重肺动脉瓣狭窄胎儿右心发育不良程度的评价作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(04): 377-383.
[4] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[5] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[6] 杨建波, 马欢, 黄小梅, 刘华柱. 结肠镜辅助下EMR、CSP和RFA术治疗直径<1cm结直肠息肉的疗效和安全性比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 76-79.
[7] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[8] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[9] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[10] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[11] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[12] 王洪, 王骏华, 范建楠. 人工智能技术在肩袖损伤中的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 356-361.
[13] 丁亚琴, 方旭, 戴彦成. 基于紧密型医联体的“一免三优先政策”在基层消化道肿瘤筛查中的应用探讨[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 481-484.
[14] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[15] 杨松林, 黄仕豪, 王丽珠, 李禧萌, 邹飞翔, 李坤炜, 梁明柱, 陈炳辉. 良性肺结节生长变化的影像学评价[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 344-350.
阅读次数
全文


摘要