切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2022, Vol. 11 ›› Issue (02) : 154 -157. doi: 10.3877/cma.j.issn.2095-3224.2022.02.010

综述

人工智能辅助结肠镜检查在下消化道病变的应用进展
陈冰虹1, 伍海锐2,(), 柯岩2, 张玮3, 王贵齐2,()   
  1. 1. 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院内镜科;518116 国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院深圳医院内镜科
    2. 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院内镜科
    3. 518116 国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院深圳医院内镜科
  • 收稿日期:2022-01-24 出版日期:2022-04-25
  • 通信作者: 伍海锐, 王贵齐
  • 基金资助:
    国家重点研发计划(2016YFC1302800,2016YFC0901402,2018YFC1313103); 深圳市医疗卫生三名工程项目(SZSM201911008)

Application and progress of artificial intelligence-assisted colonoscopy in the examination of lower digestive tract diseases

Binghong Chen1, Hairui Wu2,(), Yan Ke2, Wei Zhang3, Guiqi Wang2,()   

  1. 1. Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China;Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
    2. Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
    3. Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
  • Received:2022-01-24 Published:2022-04-25
  • Corresponding author: Hairui Wu, Guiqi Wang
引用本文:

陈冰虹, 伍海锐, 柯岩, 张玮, 王贵齐. 人工智能辅助结肠镜检查在下消化道病变的应用进展[J]. 中华结直肠疾病电子杂志, 2022, 11(02): 154-157.

Binghong Chen, Hairui Wu, Yan Ke, Wei Zhang, Guiqi Wang. Application and progress of artificial intelligence-assisted colonoscopy in the examination of lower digestive tract diseases[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2022, 11(02): 154-157.

随着我国科技的进步及人民生活质量的逐渐提高,结直肠癌已跃升为前五高发的癌症,严重影响人民的健康及预期寿命。结直肠癌的形成需要一个很漫长的过程,因此,早发现、早诊断及早治疗极其重要,其中规范化的结肠镜检查是发现早期结直肠癌最有效的方法。近年来,人工智能辅助消化内镜检查正成为研究的热点,其应用在结直肠癌早诊早治方面有明显的成效。本文就人工智能辅助结肠镜检查的优缺点及存在的问题进行综述,并对未来人工智能辅助内镜诊断结直肠癌中的应用方向进行展望。

With the advancement of technology and the gradual improvement of people's quality of life, colorectal cancer has become to the top five high prevalent cancer, seriously affecting people's health and life expectancy. Since the formation of colorectal cancer requires a very long process, therefore, early detection, early diagnosis and early treatment are extremely important, among which standardized colonoscopy is the most effective method to detect early-staged colorectal cancer. Recently, artificial intelligence (AI) assisted gastrointestinal endoscopy is becoming one of the hot research topics, among which the application has obvious effectiveness in early diagnosis and treatment of colorectal cancer. This manuscript reviews the advantages, disadvantages and the potential problems of AI-assisted colonoscopy, and provides an outlook on the future application direction in AI-assisted endoscopic diagnosis of colorectal cancer.

[1]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[2]
Zauber AG, Winawer SJ, O'Brien MJ, et al. Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths[J]. N Engl J Med, 2012, 366(8): 687-696.
[3]
Nishihara R, Wu K, Lochhead P, et al. Long-term colorectal-cancer incidence and mortality after lower endoscopy[J]. N Engl J Med, 2013, 369(12): 1095-1105.
[4]
Pilonis ND, Bugajski M, Wieszczy P, et al. Long-term colorectal cancer incidence and mortality after a single negative screening colonoscopy[J]. Ann Intern Med, 2020, 173(2): 81-91.
[5]
Zhao S, Wang S, Pan P, et al. Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis[J]. Gastroenterology, 2019, 156(6): 1661-1674.
[6]
Goyal H, Mann R, Gandhi Z, et al. Scope of artificial intelligence in screening and diagnosis of colorectal cancer[J]. J Clin Med, 2020, 9(10): 3313.
[7]
Yao L, Zhang L, Liu J, et al. Effect of an artificial intelligence-based quality improvement system on efficacy of a computer-aided detection system in colonoscopy: a four-group parallel study[J]. Endoscopy, 2021, Nov 25.
[8]
Veitch AM, Uedo N, Yao K, et al. Optimizing early upper gastrointestinal cancer detection at endoscopy[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(11): 660-667.
[9]
van der Sommen F, Zinger S, Curvers WL, et al. Computer-aided detection of early neoplastic lesions in Barrett's esophagus[J]. Endoscopy, 2016, 48(7): 617-624.
[10]
Urban G, Tripathi P, Alkayali T, et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy[J]. Gastroenterology, 2018, 155(4): 1069-1078.
[11]
Yang YJ, Bang CS. Application of artificial intelligence in gastroenterology[J]. World J Gastroenterol, 2019, 25(14): 1666-1683.
[12]
Ruffle JK, Farmer AD, Aziz Q. Artificial intelligence-assisted gastroenterology- promises and pitfalls[J]. Am J Gastroenterol, 2019, 114(3): 422-428.
[13]
Ahmad OF, Soares AS, Mazomenos E, et al. Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions[J]. Lancet Gastroenterol Hepatol, 2019, 4(1): 71-80.
[14]
Horie Y, Yoshio T, Aoyama K, et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks[J]. Gastrointest Endosc, 2019, 89(1): 25-32.
[15]
Cai SL, Li B, Tan WM, et al. Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video)[J]. Gastrointest Endosc, 2019, 90(5): 745-753.
[16]
de Groof AJ, Struyvenberg MR, van der Putten J, et al. Deep-learning system detects neoplasia in patients with barrett's esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking[J]. Gastroenterology, 2020, 158(4): 915-929.
[17]
Guo L, Xiao X, Wu C, et al. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos)[J]. Gastrointest Endosc, 2020, 91(1): 41-51.
[18]
Tokai Y, Yoshio T, Aoyama K, et al. Application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma[J]. Esophagus, 2020, 17(3): 250-256.
[19]
Nakagawa K, Ishihara R, Aoyama K, et al. Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists[J]. Gastrointest Endosc, 2019, 90(3): 407-414.
[20]
王智杰, 高杰, 孟茜茜, 等. 基于深度学习的人工智能技术在早期胃癌诊断中的应用[J]. 中华消化内镜杂志, 2018, 35(8): 551-556.
[21]
Kanesaka T, Lee TC, Uedo N, et al. Computer-aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow-band imaging[J]. Gastrointest Endosc, 2018, 87(5): 1339-1344.
[22]
Shichijo S, Nomura S, Aoyama K, et al. Application of convolutional neural networks in the diagnosis of helicobacter pylori infection based on endoscopic images[J]. E Bio Medicine, 2017, 25: 106-111.
[23]
Zhou T, Han G, Li BN, et al. Quantitative analysis of patients with celiac disease by video capsule endoscopy: A deep learning method[J]. Comput Biol Med, 2017: 851-856.
[24]
Dimas G, Spyrou E, Iakovidis DK, et al. Intelligent visual localization of wireless capsule endoscopes enhanced by color information[J]. Comput Biol Med, 2017, 89: 429-440.
[25]
Froehlich F, Wietlisbach V, Gonvers JJ, et al. Impact of colonic cleansing on quality and diagnostic yield of colonoscopy: the European panel of appropriateness of gastrointestinal endoscopy European multicenter study[J]. Gastrointest Endosc, 2005, 61(3): 378-384.
[26]
Su JR, Li Z, Shao XJ, et al. Impact of a real-time automatic quality control system on colorectal polyp and adenoma detection: a prospective randomized controlled study (with videos)[J]. Gastrointest Endosc, 2020, 91(2): 415-424.
[27]
Lee JY, Calderwood AH, Karnes W, et al. Artificial intelligence for the assessment of bowel preparation[J]. Gastrointest Endosc, 2022, 95(3): 512-518.
[28]
Zhou J, Wu L, Wan X, et al. A novel artificial intelligence system for the assessment of bowel preparation (with video)[J]. Gastrointest Endosc, 2020, 91(2): 428-435.
[29]
Rembacken B, Hassan C, Riemann JF, et al. Quality in screening colonoscopy: position statement of the European Society of Gastrointestinal Endoscopy (ESGE)[J]. Endoscopy, 2012, 44(10): 957-968.
[30]
Gong D, Wu L, Zhang J, et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study[J]. Lancet Gastroenterol Hepatol, 2020, 5(4): 352-361.
[31]
Haj-Hassan H, Chaddad A, Harkouss Y, et al. Classifications of multispectral colorectal cancer tissues using convolution neural network[J]. J Pathol Inform, 2017, (8): 1.
[32]
Endoscopic Classification Review Group. Update on the paris classification of superficial neoplastic lesions in the digestive tract[J]. Endoscopy, 2005, 37(6): 570-578.
[33]
Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study[J]. Gut, 2019, 68(10): 1813-1819.
[34]
Wang P, Liu P, Glissen Brown JR, et al. Lower adenoma miss rate of computer-aided detection-assisted colonoscopy vs routine white-light colonoscopy in a prospective tandem study[J]. Gastroenterology, 2020, 159(4): 1252-1261.
[35]
Repici A, Badalamenti M, Maselli R, et al. Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial[J]. Gastroenterology, 2020, 159(2): 512-520.
[36]
Zhao SB, Yang W, Wang SL, et al. Establishment and validation of a computer-assisted colonic polyp localization system based on deep learning[J]. World J Gastroenterol, 2021, 27(31): 5232-5246.
[37]
Yamada M, Saito Y, Imaoka H, et al. Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy[J]. Sci Rep, 2019, 9(1): 14465.
[38]
Tong Y, Lu K, Yang Y, et al. Can natural language processing help differentiate inflammatory intestinal diseases in China? Models applying random forest and convolutional neural network approaches[J]. BMC Med Inform Decis Mak, 2020, 20(1): 248.
[39]
Takemura Y, Yoshida S, Tanaka S, et al. Computer-aided system for predicting the histology of colorectal tumors by using narrow-band imaging magnifying colonoscopy (with video)[J]. Gastrointest Endosc, 2012, 75(1): 179-185.
[40]
Takemura Y, Yoshida S, Tanaka S, et al. Quantitative analysis and development of a computer-aided system for identification of regular pit patterns of colorectal lesions[J]. Gastrointest Endosc, 2010, 72(5): 1047-1051.
[41]
He J, Baxter SL, Xu J, et al. The practical implementation of artificial intelligence technologies in medicine[J]. Nat Med, 2019, 25(1): 30-36.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 杨菲菲, 林锡祥, 陈亦新, 王秋霜, 张丽伟, 陈煦, 张梅青, 王淑华, 何昆仑. 基于深度学习的超声心动图自动识别节段性室壁运动异常的研究[J]. 中华医学超声杂志(电子版), 2023, 20(04): 424-429.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[5] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[6] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[7] 胡博文, 戴英波. 泌尿外科机器人手术新趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 418-421.
[8] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[9] 方红燕, 刘晓昌, 方家旭. 腹部按压联合综合护理在腹壁造口旁疝患者肠镜检查中的应用效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 625-629.
[10] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[11] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[12] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[13] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[14] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[15] 孔绘敏, 王秀勤, 梁海. 硫酸镁钠钾口服液与复方聚乙二醇电解质散对患者肠道清洁的对比研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 259-261.
阅读次数
全文


摘要