切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2019, Vol. 08 ›› Issue (02) : 115 -119. doi: 10.3877/cma.j.issn.2095-3224.2019.02.002

所属专题: 文献

青年专家论坛

人工智能技术在结直肠癌中的应用与展望
吴涵1, 余志龙2, 黄陈2,()   
  1. 1. 201600 上海交通大学附属第一人民医院临床医学院
    2. 201600 上海交通大学附属第一人民医院胃肠外科
  • 收稿日期:2018-09-17 出版日期:2019-04-25
  • 通信作者: 黄陈
  • 基金资助:
    国家自然科学基金面上项目(No.817725276); 上海交通大学医工交叉项目(No.YG2017MS28); 上海交通大学医院高峰高原计划(No.20161425)

Application and prospect of artificial intelligence technology in colorectal cancer

Han Wu1, Zhilong Yu2, Chen Huang2,()   

  1. 1. School of Clinical Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201600, China
    2. Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201600, China
  • Received:2018-09-17 Published:2019-04-25
  • Corresponding author: Chen Huang
  • About author:
    Corresponding author: Huang Chen, Email:
引用本文:

吴涵, 余志龙, 黄陈. 人工智能技术在结直肠癌中的应用与展望[J]. 中华结直肠疾病电子杂志, 2019, 08(02): 115-119.

Han Wu, Zhilong Yu, Chen Huang. Application and prospect of artificial intelligence technology in colorectal cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2019, 08(02): 115-119.

人工智能技术自问世以来,一直被人们不断研究,并取得飞跃式的发展。目前,人工智能技术已在科研、经济和日常生活等方面得到广泛运用。在医学方面,人工智能主要应用在许多疾病的诊断、治疗和预后预测中。结直肠癌是常见的一种消化道恶性肿瘤,其早期的诊断和治疗是影响其预后的关键因素。本文将综述人工智能在结直肠癌诊治中的应用现状,并展望人工智能在结直肠癌中更加深入和广泛运用的前景。

Since the advent of artificial intelligence, it has been continuously researched, in which made a huge progress. Nowadays, artificial intelligence technology has been widely used in research, economy and daily life. In medicine, artificial intelligence is used in the diagnosis, treatment, and prognosis prediction of many diseases. Colorectal cancer is a common malignant tumor of the digestive tract of which early diagnosis and treatment are the key factors affecting its prognosis. In this paper, we will describe the development of artificial intelligence in the diagnosis, treatment and prognosis prediction of colorectal cancer, and provide an outlook of prospect about artificial intelligence being more deeply and widely used in the colorectal cancer.

[1]
Legg S, Hutter M. A Collection of Definitions of Intelligence [J]. Frontiers in Artificial Intelligence and Applications, 2007, (157):17-24.
[2]
Needham J, Kuhn D, Tsien TH. Science and civilisation in China [M]. Cambridge: Cambridge University Press, 1965: vol.4.
[3]
Hamet P, Tremblay J. Artificial intelligence in medicine [J]. Insights Into the Future of Medicine: Technologies, Concepts, and Integration, 2017, 69:S36-S40.
[4]
de Grey AD. Artificial Intelligence and Medical Research: Time to Aim Higher? [J]. Rejuvenation Research, 2016, 19(2):105-106.
[5]
Hood L, Heath JR, Phelps ME, et al. Systems Biology and New Technologies Enable Predictive and Preventative Medicine [J]. Science, 2004, 306(5696):640.
[6]
Theofilatos K, Pavlopoulou N, Papasavvas C, et al. Predicting protein complexes from weighted protein–protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering [J]. Artificial Intelligence in Medicine, 2015, 63(3):181-189.
[7]
Castaneda C, Nalley K, Mannion C, et al. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine [J]. Journal of Clinical Bioinformatics, 2015, 5(1):4.
[8]
Luxton DD. Recommendations for the ethical use and design of artificial intelligent care providers [J]. Artificial Intelligence in Medicine, 2014, 62(1):1-10.
[9]
Cornet G. Robot companions and ethics a pragmatic approach of ethical design [J]. J Int Bioethique, 2013, 24(4):49-58, 179-180.
[10]
Knight BA, Potretzke AM, Larson JA, et al. Comparing Expert Reported Outcomes to National Surgical Quality Improvement Program Risk Calculator-Predicted Outcomes: Do Reporting Standards Differ? [J]. Journal of Endourology, 2015, 29(9):1091-1099.
[11]
Larson JA, Johnson MH, Bhayani SB. Application of Surgical Safety Standards to Robotic Surgery: Five Principles of Ethics for Nonmaleficence [J]. Journal of the American College of Surgeons, 2014, 218(2):290-293.
[12]
Leonard S, Wu KL, Kim Y, et al. Smart Tissue Anastomosis Robot (STAR): A Vision-Guided Robotics System for Laparoscopic Suturing [J]. IEEE Transactions on Biomedical Engineering, 2014, 61(4):1305-1317.
[13]
Cunningham D, Atkin W, Lenz HJ, et al. Colorectal cancer [J]. Lancet (London, England), 2010, 375(9719):1030-1047.
[14]
Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017 [J]. CA: A Cancer Journal for Clinicians, 2017, 67(3):177-193.
[15]
Misawa M, Kudo S, Mori Y, et al. Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience [J]. Gastroenterology, 2018, 154(8):2027-2029.e3.
[16]
Halligan S, Altman DG, Taylor SA, et al. CT Colonography in the Detection of Colorectal Polyps and Cancer: Systematic Review, Meta-Analysis, and Proposed Minimum Data Set for Study Level Reporting [J]. Radiology, 2005, 237(3):893-904.
[17]
Bell LTO, Gandhi S. A comparison of computer-assisted detection (CAD) programs for the identification of colorectal polyps: performance and sensitivity analysis, current limitations and practical tips for radiologists [J]. Clinical Radiology, 2018, 73(6):593.e11-e18.
[18]
Hornbrook MC, Goshen R, Choman E, et al. Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data [J]. Digestive Diseases and Sciences, 2017, 62(10):2719-2727.
[19]
Ichimasa K, Kudo S, Mori Y, et al. Su1643 Artificial Intelligence Can Accurately Predict the Presence of Lymph Node Metastasis in Pt1 Colorectal Cancers [J]. DDW 2017 ASGE Program and Abstracts, 2017, 85(5, Supplement):AB377.
[20]
Felfoul O, Mohammadi M, Taherkhani S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions [J]. Nature Nanotechnology, 2016, 11(11):941-947.
[21]
Li S, Jiang Q, Liu S, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo [J]. Nature Biotechnology, 2018, 36(3):258-264.
[22]
Mayo RM, Summey JF, Williams JE, et al. Qualitative Study of Oncologists′ Views on the CancerLinQ Rapid Learning System [J]. Journal of Oncology Practice, 2017, 13(3):e176-e184.
[23]
Osterman E, Glimelius B. Recurrence Risk After Up-to-Date Colon Cancer Staging, Surgery, and Pathology: Analysis of the Entire Swedish Population [J]. Diseases of the Colon & Rectum, 2018, 61(9):1016-1025.
[24]
Spelt L, Nilsson J, Andersson R, et al. Artificial neural networks--a method for prediction of survival following liver resection for colorectal cancer metastases [J]. European Journal of Surgical Oncology, 2013, 39(6):648-654.
[25]
Kuo RJ, Huang MH, Cheng WC, et al. Application of a two-stage fuzzy neural network to a prostate cancer prognosis system [J]. Artificial Intelligence in Medicine, 2015, 63(2):119-133.
[26]
Donovan MJ, Fernandez G, Scott R, et al. Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithm-based test [J]. Prostate Cancer Prostatic Dis, 2018, 21(4):594-603.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[3] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[4] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[5] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[6] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[7] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[8] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[9] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[10] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[11] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[12] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[13] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[14] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[15] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
阅读次数
全文


摘要