切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2019, Vol. 08 ›› Issue (02) : 115 -119. doi: 10.3877/cma.j.issn.2095-3224.2019.02.002

所属专题: 文献

青年专家论坛

人工智能技术在结直肠癌中的应用与展望
吴涵1, 余志龙2, 黄陈2,()   
  1. 1. 201600 上海交通大学附属第一人民医院临床医学院
    2. 201600 上海交通大学附属第一人民医院胃肠外科
  • 收稿日期:2018-09-17 出版日期:2019-04-25
  • 通信作者: 黄陈
  • 基金资助:
    国家自然科学基金面上项目(No.817725276); 上海交通大学医工交叉项目(No.YG2017MS28); 上海交通大学医院高峰高原计划(No.20161425)

Application and prospect of artificial intelligence technology in colorectal cancer

Han Wu1, Zhilong Yu2, Chen Huang2,()   

  1. 1. School of Clinical Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201600, China
    2. Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201600, China
  • Received:2018-09-17 Published:2019-04-25
  • Corresponding author: Chen Huang
  • About author:
    Corresponding author: Huang Chen, Email:
引用本文:

吴涵, 余志龙, 黄陈. 人工智能技术在结直肠癌中的应用与展望[J/OL]. 中华结直肠疾病电子杂志, 2019, 08(02): 115-119.

Han Wu, Zhilong Yu, Chen Huang. Application and prospect of artificial intelligence technology in colorectal cancer[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2019, 08(02): 115-119.

人工智能技术自问世以来,一直被人们不断研究,并取得飞跃式的发展。目前,人工智能技术已在科研、经济和日常生活等方面得到广泛运用。在医学方面,人工智能主要应用在许多疾病的诊断、治疗和预后预测中。结直肠癌是常见的一种消化道恶性肿瘤,其早期的诊断和治疗是影响其预后的关键因素。本文将综述人工智能在结直肠癌诊治中的应用现状,并展望人工智能在结直肠癌中更加深入和广泛运用的前景。

Since the advent of artificial intelligence, it has been continuously researched, in which made a huge progress. Nowadays, artificial intelligence technology has been widely used in research, economy and daily life. In medicine, artificial intelligence is used in the diagnosis, treatment, and prognosis prediction of many diseases. Colorectal cancer is a common malignant tumor of the digestive tract of which early diagnosis and treatment are the key factors affecting its prognosis. In this paper, we will describe the development of artificial intelligence in the diagnosis, treatment and prognosis prediction of colorectal cancer, and provide an outlook of prospect about artificial intelligence being more deeply and widely used in the colorectal cancer.

[1]
Legg S, Hutter M. A Collection of Definitions of Intelligence [J]. Frontiers in Artificial Intelligence and Applications, 2007, (157):17-24.
[2]
Needham J, Kuhn D, Tsien TH. Science and civilisation in China [M]. Cambridge: Cambridge University Press, 1965: vol.4.
[3]
Hamet P, Tremblay J. Artificial intelligence in medicine [J]. Insights Into the Future of Medicine: Technologies, Concepts, and Integration, 2017, 69:S36-S40.
[4]
de Grey AD. Artificial Intelligence and Medical Research: Time to Aim Higher? [J]. Rejuvenation Research, 2016, 19(2):105-106.
[5]
Hood L, Heath JR, Phelps ME, et al. Systems Biology and New Technologies Enable Predictive and Preventative Medicine [J]. Science, 2004, 306(5696):640.
[6]
Theofilatos K, Pavlopoulou N, Papasavvas C, et al. Predicting protein complexes from weighted protein–protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering [J]. Artificial Intelligence in Medicine, 2015, 63(3):181-189.
[7]
Castaneda C, Nalley K, Mannion C, et al. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine [J]. Journal of Clinical Bioinformatics, 2015, 5(1):4.
[8]
Luxton DD. Recommendations for the ethical use and design of artificial intelligent care providers [J]. Artificial Intelligence in Medicine, 2014, 62(1):1-10.
[9]
Cornet G. Robot companions and ethics a pragmatic approach of ethical design [J]. J Int Bioethique, 2013, 24(4):49-58, 179-180.
[10]
Knight BA, Potretzke AM, Larson JA, et al. Comparing Expert Reported Outcomes to National Surgical Quality Improvement Program Risk Calculator-Predicted Outcomes: Do Reporting Standards Differ? [J]. Journal of Endourology, 2015, 29(9):1091-1099.
[11]
Larson JA, Johnson MH, Bhayani SB. Application of Surgical Safety Standards to Robotic Surgery: Five Principles of Ethics for Nonmaleficence [J]. Journal of the American College of Surgeons, 2014, 218(2):290-293.
[12]
Leonard S, Wu KL, Kim Y, et al. Smart Tissue Anastomosis Robot (STAR): A Vision-Guided Robotics System for Laparoscopic Suturing [J]. IEEE Transactions on Biomedical Engineering, 2014, 61(4):1305-1317.
[13]
Cunningham D, Atkin W, Lenz HJ, et al. Colorectal cancer [J]. Lancet (London, England), 2010, 375(9719):1030-1047.
[14]
Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017 [J]. CA: A Cancer Journal for Clinicians, 2017, 67(3):177-193.
[15]
Misawa M, Kudo S, Mori Y, et al. Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience [J]. Gastroenterology, 2018, 154(8):2027-2029.e3.
[16]
Halligan S, Altman DG, Taylor SA, et al. CT Colonography in the Detection of Colorectal Polyps and Cancer: Systematic Review, Meta-Analysis, and Proposed Minimum Data Set for Study Level Reporting [J]. Radiology, 2005, 237(3):893-904.
[17]
Bell LTO, Gandhi S. A comparison of computer-assisted detection (CAD) programs for the identification of colorectal polyps: performance and sensitivity analysis, current limitations and practical tips for radiologists [J]. Clinical Radiology, 2018, 73(6):593.e11-e18.
[18]
Hornbrook MC, Goshen R, Choman E, et al. Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data [J]. Digestive Diseases and Sciences, 2017, 62(10):2719-2727.
[19]
Ichimasa K, Kudo S, Mori Y, et al. Su1643 Artificial Intelligence Can Accurately Predict the Presence of Lymph Node Metastasis in Pt1 Colorectal Cancers [J]. DDW 2017 ASGE Program and Abstracts, 2017, 85(5, Supplement):AB377.
[20]
Felfoul O, Mohammadi M, Taherkhani S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions [J]. Nature Nanotechnology, 2016, 11(11):941-947.
[21]
Li S, Jiang Q, Liu S, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo [J]. Nature Biotechnology, 2018, 36(3):258-264.
[22]
Mayo RM, Summey JF, Williams JE, et al. Qualitative Study of Oncologists′ Views on the CancerLinQ Rapid Learning System [J]. Journal of Oncology Practice, 2017, 13(3):e176-e184.
[23]
Osterman E, Glimelius B. Recurrence Risk After Up-to-Date Colon Cancer Staging, Surgery, and Pathology: Analysis of the Entire Swedish Population [J]. Diseases of the Colon & Rectum, 2018, 61(9):1016-1025.
[24]
Spelt L, Nilsson J, Andersson R, et al. Artificial neural networks--a method for prediction of survival following liver resection for colorectal cancer metastases [J]. European Journal of Surgical Oncology, 2013, 39(6):648-654.
[25]
Kuo RJ, Huang MH, Cheng WC, et al. Application of a two-stage fuzzy neural network to a prostate cancer prognosis system [J]. Artificial Intelligence in Medicine, 2015, 63(2):119-133.
[26]
Donovan MJ, Fernandez G, Scott R, et al. Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithm-based test [J]. Prostate Cancer Prostatic Dis, 2018, 21(4):594-603.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[5] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[6] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[7] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[8] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[9] 刘柏隆, 周祥福. 压力性尿失禁阶梯治疗的项目介绍[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 125-125.
[10] 刘柏隆. 女性压力性尿失禁阶梯治疗之手术治疗方案选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 126-126.
[11] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
[12] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[13] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[14] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[15] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
阅读次数
全文


摘要