切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2018, Vol. 07 ›› Issue (03) : 276 -280. doi: 10.3877/cma.j.issn.2095-3224.2018.03.016

所属专题: 文献

综述

肠黏膜屏障损伤与保护分子机制研究进展
徐胜1,(), 黄顺荣1   
  1. 1. 530021 南宁,广西壮族自治区人民医院胃肠外科
  • 收稿日期:2017-07-22 出版日期:2018-06-25
  • 通信作者: 徐胜
  • 基金资助:
    国家自然科学基金项目资助(No.81360081)

Research progress in intestinal mucosal barrier damage and protective molecular mechanism

Sheng Xu1,(), Shunrong Huang1   

  1. 1. Department of Gastrointestinal Surgery, People′s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
  • Received:2017-07-22 Published:2018-06-25
  • Corresponding author: Sheng Xu
  • About author:
    Corresponding author: Xu Sheng, Email:
引用本文:

徐胜, 黄顺荣. 肠黏膜屏障损伤与保护分子机制研究进展[J/OL]. 中华结直肠疾病电子杂志, 2018, 07(03): 276-280.

Sheng Xu, Shunrong Huang. Research progress in intestinal mucosal barrier damage and protective molecular mechanism[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2018, 07(03): 276-280.

介绍肠黏膜屏障损伤因素的分子机制,如内毒素及氧自由基、炎症介质和细胞因子如白细胞介素(interleukin)、肿瘤坏死因子-α(TNF-α)、核转录因子kappa B、TOLL样受体(TLRs)和NOD受体通路、高迁移率族蛋白B1、烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶(NOX)等。对肠黏膜屏障的保护分子机制如肠上皮紧密连接蛋白、白介素家族、其它保护性调控因子等作出介绍。

This paper reviews the molecular mechanism of intestinal mucosal barrier damage factors, such as endotoxin and oxygen free radicals, inflammatory mediators and cytokines such as interleukin (IL), tumor necrosis factor-α (TNF-α), nuclear transcription factor kappa B and TOLL like receptor (TLRs) and NOD receptor pathway, HMGB1, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) etc. The protective molecular mechanisms of intestinal mucosal barrier such as intestinal epithelial tight connexin, interleukin family, and other protective regulatory factors are introduced.

[1]
Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes [J]. World Journal of Surgery, 1996, 20(4): 411-417.
[2]
Ammori BJ, Fitzgerald P, Hawkey P, et al. The early increase in intestinal permeability and systemic endotoxin exposure in patients with severe acute pancreatitis is not associated with systemic bacterial translocation: molecular investigation of microbial DNA in the blood [J]. Pancreas, 2003, 26(1): 18-22.
[3]
Fishman JE, Levy G, Alli V, et al. The intestinal mucus layer is a critical component of the gut barrier that is damaged during acute pancreatitis [J]. Shock, 2014, 42(3): 264-270.
[4]
Sasaki M, Joh T. Oxidative Stress and Ischemia-Reperfusion Injury in Gastrointestinal Tract and Antioxidant, Protective Agents [J]. Journal of Clinical Biochemistry & Nutrition, 2007, 40(1): 1.
[5]
Xiao YT, Yan WH, Cao Y, et al. Neutralization of IL-6 and TNF-α ameliorates intestinal permeability in DSS-induced colitis [J]. Cytokine, 2016, 83(7): 189-192.
[6]
Satoh A, Shimosegawa T, Fujita M, et al. Inhibition of nuclear factor-kappaB activation improves the survival of rats with taurocholate pancreatitis [J]. Gut, 1999, 44(2): 253-258.
[7]
Poyet JL, Alnemri ES. NF-κB Activation by Card Proteins[M]. Nuclear Factor Кb, 2003: 69-88.
[8]
Brenmoehl J, Herfarth H, Glück T, et al. Genetic variants in the NOD2/CARD15 gene are associated with early mortality in sepsis patients [J]. Intensive care medicine, 2007, 33(9): 1541-1548.
[9]
Qian M, Fang L, Cui Y. Expression of NOD2 in a rat model of acute pancreatitis [J]. Pancreas, 2010, 39(7): 1034-1040.
[10]
Sims GP, Rowe DC, Rietdijk ST, et al. HMGB1 and RAGE in Inflammation and Cancer [J]. Annual Review of Immunology, 2010, 28(28): 367.
[11]
张伟杰, 徐桂芳, 田志强, 等. 高迁移率族蛋白B1与急性胰腺炎肠黏膜屏障损伤关系的研究 [J]. 胃肠病学, 2012, 17(11): 669-672.
[12]
Hasegawa A, Iwasaka H, Hagiwara S, et al. Relationship Between HMGB1 and Tissue Protective Effects of HSP72 in a LPS-Induced Systemic Inflammation Model [J]. Journal of Surgical Research, 2011, 169(1): 85.
[13]
Yu JH, Kim KH, Kim H. Role of NADPH oxidase and calcium in cerulein-induced apoptosis: involvement of apoptosis-inducing factor [J]. Annals of the New York Academy of Sciences, 2006, 1090(1): 292.
[14]
Yu JH, Lim JW, Kim H, et al. NADPH oxidase mediates interleukin-6 expression in cerulein-stimulated pancreatic acinar cells [J]. International Journal of Biochemistry & Cell Biology, 2007, 39(11): 2063.
[15]
Gukovskaya AS, Vaquero E, Zaninovic V, et al. Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine experimental acute pancreatitis [J]. Gastroenterology, 2002, 122(4): 974-984.
[16]
张琛琛. NOX1和NOX4在小鼠脑缺血再灌注损伤中的表达及功能[D]. 2012, 华中科技大学.
[17]
郭毅斌, 郑江, 吕根法, 等. MP-1对脓毒症小鼠的保护作用及其机制 [J]. 中华创伤杂志, 2004, 20(11): 678-681.
[18]
Lambeth JD. NOX enzymes and the biology of reactive oxygen [J]. Nature Reviews Immunology, 2004, 4(3): 181.
[19]
Conway EM. Thrombomodulin and its role in inflammation [J]. Seminars in Immunopathology, 2012, 34(1): 107.
[20]
丁志辉, 张红艳. 热休克蛋白70的胃肠黏膜分子伴侣保护作用及免疫调节功能 [J]. 南昌大学学报(医学版), 2009, 49(1): 136-138.
[21]
邓鸿敖, 张红艳, 熊林朋, 等. 细胞外热休克蛋白70对严重烫伤大鼠肠道免疫功能的影响 [J]. 中华烧伤杂志, 2016, 32(5): 272-276.
[22]
Tsuruma T, Yagihashi A, Matsuno T, et al. The heat-shock protein 70 family reduces ischemia/reperfusion injury in small intestine [J]. Transplantation Proceedings, 1996, 28(5): 2629-2630.
[23]
Afrazi A, Korff S, Loughran P, et al. Intestinal Heat Shock Protein 70 (HSP70) Over Expression Attenuates Local and Remote Inflammation and Organ Injury Following Hemorrhagic Shock and Trauma [J]. Journal of Surgical Research, 2012, 172(2): 325-325.
[24]
蔡慧云, 魏晓军, 齐心, 等. 白细胞介素11调控大鼠NEC肠道增殖与凋亡的分子机制研究 [J]. 中华普外科手术学杂志电子版, 2016, 10(4): 340-343.
[25]
杨学超, 东传凌. 白细胞介素22在肠道损伤修复中的研究进展 [J]. 医学综述, 2016, 22(2): 242-244.
[26]
张新艳. IL-22及其受体IL-22RA1在肠上皮损伤修复中的功能研究 [D]. 2015, 华东师范大学.
[27]
柏超, 陈霞, 李昌平. HMGB1在重症急性胰腺炎肠黏膜屏障损伤中作用的研究进展 [J]. 山东医药, 2016, 56(34): 103-105.
[28]
Ahmed MA, Jackson D, Seth R, et al. CD24 is upregulated in inflammatory bowel disease and stimulates cell motility and colony formation [J]. Inflammatory Bowel Diseases, 2010, 16(5): 795.
[29]
吴国豪. 肠屏障功能障碍及防治对策 [J]. 肠外与肠内营养, 2004, 11(5): 313-316.
[1] 蚁淳, 袁冬生, 熊学军. 系统免疫炎症指数与骨密度降低和骨质疏松的关联[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 609-617.
[2] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[3] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[4] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[5] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[6] 杜贵伟, 陆勇, 成博, 贺薏, 梁爽. 钬激光碎石术术后联合坦索罗辛治疗对输尿管结石患者的影响分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 491-496.
[7] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[8] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[9] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[10] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[11] 杭丽, 张耀辉, 孙文恺. 参菝抗瘤液对结直肠腺瘤性息肉术后肠道功能、炎症指标及复发情况的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 413-416.
[12] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[13] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[14] 欧春影, 李晓宾, 郭靖, 朱亮, 许可, 王梦, 安晓雷. 丁苯酞对血管性认知障碍大鼠炎症因子的影响及对认知障碍的改善作用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 483-487.
[15] 牟磊, 徐东成, 韩鑫, 徐长江, 韩坤锜, 薛叶潇, 牟媛, 秦文玲, 刘相静, 陈哲, 高楠. 五虫通络胶囊防治椎动脉开口支架术后再狭窄发生的效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 467-472.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?