切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2018, Vol. 07 ›› Issue (03) : 276 -280. doi: 10.3877/cma.j.issn.2095-3224.2018.03.016

所属专题: 文献

综述

肠黏膜屏障损伤与保护分子机制研究进展
徐胜1,(), 黄顺荣1   
  1. 1. 530021 南宁,广西壮族自治区人民医院胃肠外科
  • 收稿日期:2017-07-22 出版日期:2018-06-25
  • 通信作者: 徐胜
  • 基金资助:
    国家自然科学基金项目资助(No.81360081)

Research progress in intestinal mucosal barrier damage and protective molecular mechanism

Sheng Xu1,(), Shunrong Huang1   

  1. 1. Department of Gastrointestinal Surgery, People′s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
  • Received:2017-07-22 Published:2018-06-25
  • Corresponding author: Sheng Xu
  • About author:
    Corresponding author: Xu Sheng, Email:
引用本文:

徐胜, 黄顺荣. 肠黏膜屏障损伤与保护分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2018, 07(03): 276-280.

Sheng Xu, Shunrong Huang. Research progress in intestinal mucosal barrier damage and protective molecular mechanism[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2018, 07(03): 276-280.

介绍肠黏膜屏障损伤因素的分子机制,如内毒素及氧自由基、炎症介质和细胞因子如白细胞介素(interleukin)、肿瘤坏死因子-α(TNF-α)、核转录因子kappa B、TOLL样受体(TLRs)和NOD受体通路、高迁移率族蛋白B1、烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶(NOX)等。对肠黏膜屏障的保护分子机制如肠上皮紧密连接蛋白、白介素家族、其它保护性调控因子等作出介绍。

This paper reviews the molecular mechanism of intestinal mucosal barrier damage factors, such as endotoxin and oxygen free radicals, inflammatory mediators and cytokines such as interleukin (IL), tumor necrosis factor-α (TNF-α), nuclear transcription factor kappa B and TOLL like receptor (TLRs) and NOD receptor pathway, HMGB1, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) etc. The protective molecular mechanisms of intestinal mucosal barrier such as intestinal epithelial tight connexin, interleukin family, and other protective regulatory factors are introduced.

[1]
Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes [J]. World Journal of Surgery, 1996, 20(4): 411-417.
[2]
Ammori BJ, Fitzgerald P, Hawkey P, et al. The early increase in intestinal permeability and systemic endotoxin exposure in patients with severe acute pancreatitis is not associated with systemic bacterial translocation: molecular investigation of microbial DNA in the blood [J]. Pancreas, 2003, 26(1): 18-22.
[3]
Fishman JE, Levy G, Alli V, et al. The intestinal mucus layer is a critical component of the gut barrier that is damaged during acute pancreatitis [J]. Shock, 2014, 42(3): 264-270.
[4]
Sasaki M, Joh T. Oxidative Stress and Ischemia-Reperfusion Injury in Gastrointestinal Tract and Antioxidant, Protective Agents [J]. Journal of Clinical Biochemistry & Nutrition, 2007, 40(1): 1.
[5]
Xiao YT, Yan WH, Cao Y, et al. Neutralization of IL-6 and TNF-α ameliorates intestinal permeability in DSS-induced colitis [J]. Cytokine, 2016, 83(7): 189-192.
[6]
Satoh A, Shimosegawa T, Fujita M, et al. Inhibition of nuclear factor-kappaB activation improves the survival of rats with taurocholate pancreatitis [J]. Gut, 1999, 44(2): 253-258.
[7]
Poyet JL, Alnemri ES. NF-κB Activation by Card Proteins[M]. Nuclear Factor Кb, 2003: 69-88.
[8]
Brenmoehl J, Herfarth H, Glück T, et al. Genetic variants in the NOD2/CARD15 gene are associated with early mortality in sepsis patients [J]. Intensive care medicine, 2007, 33(9): 1541-1548.
[9]
Qian M, Fang L, Cui Y. Expression of NOD2 in a rat model of acute pancreatitis [J]. Pancreas, 2010, 39(7): 1034-1040.
[10]
Sims GP, Rowe DC, Rietdijk ST, et al. HMGB1 and RAGE in Inflammation and Cancer [J]. Annual Review of Immunology, 2010, 28(28): 367.
[11]
张伟杰, 徐桂芳, 田志强, 等. 高迁移率族蛋白B1与急性胰腺炎肠黏膜屏障损伤关系的研究 [J]. 胃肠病学, 2012, 17(11): 669-672.
[12]
Hasegawa A, Iwasaka H, Hagiwara S, et al. Relationship Between HMGB1 and Tissue Protective Effects of HSP72 in a LPS-Induced Systemic Inflammation Model [J]. Journal of Surgical Research, 2011, 169(1): 85.
[13]
Yu JH, Kim KH, Kim H. Role of NADPH oxidase and calcium in cerulein-induced apoptosis: involvement of apoptosis-inducing factor [J]. Annals of the New York Academy of Sciences, 2006, 1090(1): 292.
[14]
Yu JH, Lim JW, Kim H, et al. NADPH oxidase mediates interleukin-6 expression in cerulein-stimulated pancreatic acinar cells [J]. International Journal of Biochemistry & Cell Biology, 2007, 39(11): 2063.
[15]
Gukovskaya AS, Vaquero E, Zaninovic V, et al. Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine experimental acute pancreatitis [J]. Gastroenterology, 2002, 122(4): 974-984.
[16]
张琛琛. NOX1和NOX4在小鼠脑缺血再灌注损伤中的表达及功能[D]. 2012, 华中科技大学.
[17]
郭毅斌, 郑江, 吕根法, 等. MP-1对脓毒症小鼠的保护作用及其机制 [J]. 中华创伤杂志, 2004, 20(11): 678-681.
[18]
Lambeth JD. NOX enzymes and the biology of reactive oxygen [J]. Nature Reviews Immunology, 2004, 4(3): 181.
[19]
Conway EM. Thrombomodulin and its role in inflammation [J]. Seminars in Immunopathology, 2012, 34(1): 107.
[20]
丁志辉, 张红艳. 热休克蛋白70的胃肠黏膜分子伴侣保护作用及免疫调节功能 [J]. 南昌大学学报(医学版), 2009, 49(1): 136-138.
[21]
邓鸿敖, 张红艳, 熊林朋, 等. 细胞外热休克蛋白70对严重烫伤大鼠肠道免疫功能的影响 [J]. 中华烧伤杂志, 2016, 32(5): 272-276.
[22]
Tsuruma T, Yagihashi A, Matsuno T, et al. The heat-shock protein 70 family reduces ischemia/reperfusion injury in small intestine [J]. Transplantation Proceedings, 1996, 28(5): 2629-2630.
[23]
Afrazi A, Korff S, Loughran P, et al. Intestinal Heat Shock Protein 70 (HSP70) Over Expression Attenuates Local and Remote Inflammation and Organ Injury Following Hemorrhagic Shock and Trauma [J]. Journal of Surgical Research, 2012, 172(2): 325-325.
[24]
蔡慧云, 魏晓军, 齐心, 等. 白细胞介素11调控大鼠NEC肠道增殖与凋亡的分子机制研究 [J]. 中华普外科手术学杂志电子版, 2016, 10(4): 340-343.
[25]
杨学超, 东传凌. 白细胞介素22在肠道损伤修复中的研究进展 [J]. 医学综述, 2016, 22(2): 242-244.
[26]
张新艳. IL-22及其受体IL-22RA1在肠上皮损伤修复中的功能研究 [D]. 2015, 华东师范大学.
[27]
柏超, 陈霞, 李昌平. HMGB1在重症急性胰腺炎肠黏膜屏障损伤中作用的研究进展 [J]. 山东医药, 2016, 56(34): 103-105.
[28]
Ahmed MA, Jackson D, Seth R, et al. CD24 is upregulated in inflammatory bowel disease and stimulates cell motility and colony formation [J]. Inflammatory Bowel Diseases, 2010, 16(5): 795.
[29]
吴国豪. 肠屏障功能障碍及防治对策 [J]. 肠外与肠内营养, 2004, 11(5): 313-316.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[3] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[4] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[5] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[6] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[7] 熊欢庆, 李玉娟, 陈键, 刘刚, 李志超, 金发光. 丹参酮IIA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 455-459.
[8] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[9] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[12] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[13] 张赟辉, 罗军, 刘栗丽, 汪宏, 耿克明. 腹膜透析与血液透析对老年终末期肾病患者营养状况及炎症反应的影响[J]. 中华临床医师杂志(电子版), 2023, 17(04): 419-423.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
阅读次数
全文


摘要