切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2016, Vol. 05 ›› Issue (01) : 64 -67. doi: 10.3877/cma.j.issn.2095-3224.2016.01.13

所属专题: 文献

综述

间质化与结直肠癌相关性的研究进展
费强1, 封益飞1, 孙跃明1,()   
  1. 1. 210000 南京医科大学第一附属医院结直肠外科
  • 收稿日期:2015-12-18 出版日期:2016-02-25
  • 通信作者: 孙跃明
  • 基金资助:
    教育部基金项目(2012YQ030261)

Research progression of the relativity between epithelial-mesenchymal transition and colorectal cancer

Qiang Fei1, Yifei Feng1, Yueming Sun1,()   

  1. 1. Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
  • Received:2015-12-18 Published:2016-02-25
  • Corresponding author: Yueming Sun
  • About author:
    Corresponding author: Sun Yueming, Email:
引用本文:

费强, 封益飞, 孙跃明. 间质化与结直肠癌相关性的研究进展[J]. 中华结直肠疾病电子杂志, 2016, 05(01): 64-67.

Qiang Fei, Yifei Feng, Yueming Sun. Research progression of the relativity between epithelial-mesenchymal transition and colorectal cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2016, 05(01): 64-67.

上皮间质化(epithelial-mesenchymal transition,EMT),指上皮细胞在某些特定因素下获得间质细胞表型的过程。在恶性肿瘤的发生和进展过程中EMT发挥重要作用。结直肠癌细胞的侵袭运动和肿瘤远处转移与EMT密切相关,EMT可能成为未来抑制结直肠癌转移的一个新的靶点,为肿瘤治疗开辟一个新方向。

Epithelial mesenchymal transition (EMT), refers to the epithelial cells obtained interstitial cell phenotype under some specific factors, EMT play an important role in the process of malignant tumor occurrence and progress. The invasion and distant metastasis of colorectal cancer cell is closely related to the EMT, EMT may become a new target for inhibiting metastasis of colorectal cancer, and be a new field for tumor treatment.

[1]
Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol, 1982, 95(1): 333-339.
[2]
Mjaatvedt C H, Markwald RR. Induction of an epithelial-mesenchymal transition by an in vivo adheron-like complex. Dev Biol, 1989, 136(1): 118-128.
[3]
Li L, Li W. Epithelial-mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther, 2015, 150: 33-46.
[4]
Brabletz T, Jung A, Spaderna S, et al. Opinion: migrating cancer stem cells-an integrated concept of malignant tumour progression. Nat Rev Cancer, 2005, 5(9): 744-749.
[5]
Ferlay J, Shin H R, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 2010, 127(12): 2893-2917.
[6]
Van Cutsem E, Rivera F, Berry S, et al. Safety and efficacy of first-line bevacizumab with FOLFOX, XELOX, FOLFIRI and fluoropyrimidines in metastatic colorectal cancer: the BEAT study. Ann Oncol, 2009, 20(11): 1842-1847.
[7]
Brenner H, Kloor M, Pox C P. Colorectal cancer. Lancet, 2014, 383(9927): 1490-1502.
[8]
Tepass U, Truong K, Godt D, et al. Cadherins in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol, 2000, 1(2): 91-100.
[9]
Shargh S A, Sakizli M, Khalaj V, et al. Downregulation of E-cadherin expression in breast cancer by promoter hypermethylation and its relation with progression and prognosis of tumor. Med Oncol, 2014, 31(11): 250.
[10]
Pena C, Garcia J M, Silva J, et al. E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Hum Mol Genet, 2005, 14(22): 3361-3370.
[11]
He X, Chen Z, Jia M, et al. Downregulated E-cadherin expression indicates worse prognosis in Asian patients with colorectal cancer: evidence from meta-analysis. PLoS One, 2013, 8(7): e70858.
[12]
韩婧,潘燕,李学军.波形蛋白的结构、功能和与肿瘤的关系.医学分子生物学杂志,2011,08(3): 265-268.
[13]
Singh S, Sadacharan S, Su S, et al. Overexpression of vimentin: role in the invasive phenotype in an androgen-independent model of prostate cancer. Cancer Res, 2003, 63(9): 2306-2311.
[14]
Cao H, Xu E, Liu H, et al. Epithelial-mesenchymal transition in colorectal cancer metastasis: A system review. Pathol Res Pract, 2015, 211(8): 557-569.
[15]
Massague J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol, 2000, 1(3): 169-178.
[16]
Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003, 113(6): 685-700.
[17]
Brown K A, Pietenpol J A, Moses H L. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J Cell Biochem, 2007, 101(1): 9-33.
[18]
Vincan E, Barker N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp Metastasis, 2008, 25(6): 657-663.
[19]
Arend R C, Londono-Joshi A I, Straughn J J, et al. The Wnt/beta-catenin pathway in ovarian cancer: a review. Gynecol Oncol, 2013, 131(3): 772-779.
[20]
Cho S W, Kim Y A, Sun H J, et al. Therapeutic potential of Dickkopf-1 in wild-type BRAF papillary thyroid cancer via regulation of beta-catenin/E-cadherin signaling. J Clin Endocrinol Metab, 2014, 99(9): E1641-E1649.
[21]
Qi L, Sun B, Liu Z, et al. Dickkopf-1 inhibits epithelial-mesenchymal transition of colon cancer cells and contributes to colon cancer suppression. Cancer Sci, 2012, 103(4): 828-835.
[22]
Wang Y, Ngo V N, Marani M, et al. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene, 2010, 29(33): 4658-4670.
[23]
Suman S, Kurisetty V, Das T P, et al. Activation of AKT signaling promotes epithelial-mesenchymal transition and tumor growth in colorectal cancer cells. Mol Carcinog, 2014, 53(Suppl 1): E151-E160.
[24]
Katoh M, Katoh M. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther, 2006, 5(9): 1059-1064.
[25]
全天一,李伟明,朱秋玲,等.miR-145下调与结直肠癌上皮间叶转化的分子机制探讨.中国现代普通外科进展,2013,16(8): 589-593.
[26]
Park S M, Gaur A B, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev, 2008, 22(7): 894-907.
[27]
Siemens H, Neumann J, Jac kstadt R, et al. Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and beta-catenin predicts distant metastasis of colon cancer. Clin Cancer Res, 2013, 19(3): 710-720.
[28]
Herrera M, Islam A B, Herrera A, et al. Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature. Clin Cancer Res, 2013, 19(21): 5914-5926.
[29]
任春霞,赵敏,徐娜,等.癌相关成纤维细胞通过IL-6诱导的"上皮-间质"转换促进宫颈癌细胞的迁移和侵袭.中国癌症杂志,2014(4): 252-257.
[30]
Miyoshi A, Kitajima Y, Sumi K, et al. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer, 2004, 90(6): 1265-1273.
[31]
Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays, 2001, 23(10): 912-923.
[32]
Wang H, Wang H S, Zhou B H, et al. Epithelial-mesenchymal transition (EMT) induced by TNF-alpha requires AKT/GSK-3 beta-mediated stabilization of snail in colorectal cancer. PLoS One, 2013, 8(2): e56664.
[33]
Hwang W L, Yang M H, Tsai M L, et al. SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology, 2011, 141(1): 279-291.
[34]
Tam W L, Weinberg R A. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med, 2013, 19(11): 1438-1449.
[35]
Moen I, Oyan A M, Kalland K H, et al. Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model. PLoS One, 2009, 4(7): e6381.
[36]
Zeisberg M, Neilson E G. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 2009, 119(6): 1429-1437.
[37]
Hongo K, Tsuno N H, Kawai K, et al. Hypoxia enhances colon cancer migration and invasion through promotion of epithelial-mesenchymal transition. J Surg Res, 2013, 182(1): 75-84.
[38]
Yang A D, Fan F, Camp E R, et al. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res, 2006, 12(14 Pt 1): 4147-4153.
[39]
Kajiyama H, Shibata K, Terauchi M, et al. Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. Int J Oncol, 2007, 31(2): 277-283.
[40]
Hoshino H, Miyoshi N, Nagai K, et al. Epithelial-mesenchymal transition with expression of SNAI1-induced chemoresistance in colorectal cancer. Biochem Biophys Res Commun, 2009, 390(3): 1061-1065.
[41]
Findlay V J, Moretz R E, Wang C, et al. Slug expression inhibits calcitriol-mediated sensitivity to radiation in colorectal cancer. Mol Carcinog, 2014, 53(Suppl 1): E130-E139.
[42]
Brabletz T, Jung A, Spaderna S, et al. Opinion: migrating cancer stem cells-an integrated concept of malignant tumour progression. Nat Rev Cancer, 2005, 5(9): 744-749.
[43]
Matsunaga K, Hosokawa A, Oohara M, et al. Direct action of a protein-bound polysaccharide, PSK, on transforming growth factor-beta. Immunopharmacology, 1998, 40(3): 219-230.
[44]
Sakamoto J, Morita S, Oba K, et al. Efficacy of adjuvant immunochemotherapy with polysaccharide K for patients with curatively resected colorectal cancer: a meta-analysis of centrally randomized controlled clinical trials. Cancer Immunol Immunother, 2006, 55(4): 404-411.
[45]
Olmeda D, Jorda M, Peinado H, et al. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene, 2007, 26(13): 1862-1874.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 贺敬龙, 尚宏喜, 郝敏, 谢伟, 高明宏, 孙炜, 刘安庆. 重度类风湿关节炎患者行多关节置换术的临床手术疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 860-864.
[3] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[4] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[5] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[6] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[7] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[8] 莫波, 王佩, 王恒, 何志军, 梁俊, 郝志楠. 腹腔镜胃癌根治术与改良胃癌根治术治疗早期胃癌的疗效[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 644-647.
[9] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[10] 索郎多杰, 高红桥, 巴桑顿珠, 仁桑. 腹腔镜下不同术式治疗肝囊型包虫病的临床疗效分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 670-673.
[11] 唐浩, 梁平, 徐小江, 曾凯, 文拨辉. 三维重建指导下腹腔镜右半肝加尾状叶切除治疗Bismuth Ⅲa型肝门部胆管癌的临床研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 688-692.
[12] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[13] 丁晨梦, 胡雪慧, 闫沛, 程乔. 髋部骨折术后患者居家康复体验质性研究的Meta整合[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 365-372.
[14] 李岩松, 李涛, 张元鸣飞, 李志鹏, 周谋望. 头戴式虚拟现实设备辅助全膝关节置换术后康复的初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 676-681.
[15] 李莹倩, 李华山. 基于真实世界的完全性直肠脱垂治疗方式评价[J]. 中华临床医师杂志(电子版), 2023, 17(06): 700-705.
阅读次数
全文


摘要