[1] |
Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol, 1982, 95(1): 333-339.
|
[2] |
Mjaatvedt C H, Markwald RR. Induction of an epithelial-mesenchymal transition by an in vivo adheron-like complex. Dev Biol, 1989, 136(1): 118-128.
|
[3] |
Li L, Li W. Epithelial-mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther, 2015, 150: 33-46.
|
[4] |
Brabletz T, Jung A, Spaderna S, et al. Opinion: migrating cancer stem cells-an integrated concept of malignant tumour progression. Nat Rev Cancer, 2005, 5(9): 744-749.
|
[5] |
Ferlay J, Shin H R, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 2010, 127(12): 2893-2917.
|
[6] |
Van Cutsem E, Rivera F, Berry S, et al. Safety and efficacy of first-line bevacizumab with FOLFOX, XELOX, FOLFIRI and fluoropyrimidines in metastatic colorectal cancer: the BEAT study. Ann Oncol, 2009, 20(11): 1842-1847.
|
[7] |
Brenner H, Kloor M, Pox C P. Colorectal cancer. Lancet, 2014, 383(9927): 1490-1502.
|
[8] |
Tepass U, Truong K, Godt D, et al. Cadherins in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol, 2000, 1(2): 91-100.
|
[9] |
Shargh S A, Sakizli M, Khalaj V, et al. Downregulation of E-cadherin expression in breast cancer by promoter hypermethylation and its relation with progression and prognosis of tumor. Med Oncol, 2014, 31(11): 250.
|
[10] |
Pena C, Garcia J M, Silva J, et al. E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Hum Mol Genet, 2005, 14(22): 3361-3370.
|
[11] |
He X, Chen Z, Jia M, et al. Downregulated E-cadherin expression indicates worse prognosis in Asian patients with colorectal cancer: evidence from meta-analysis. PLoS One, 2013, 8(7): e70858.
|
[12] |
韩婧,潘燕,李学军.波形蛋白的结构、功能和与肿瘤的关系.医学分子生物学杂志,2011,08(3): 265-268.
|
[13] |
Singh S, Sadacharan S, Su S, et al. Overexpression of vimentin: role in the invasive phenotype in an androgen-independent model of prostate cancer. Cancer Res, 2003, 63(9): 2306-2311.
|
[14] |
Cao H, Xu E, Liu H, et al. Epithelial-mesenchymal transition in colorectal cancer metastasis: A system review. Pathol Res Pract, 2015, 211(8): 557-569.
|
[15] |
Massague J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol, 2000, 1(3): 169-178.
|
[16] |
Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003, 113(6): 685-700.
|
[17] |
Brown K A, Pietenpol J A, Moses H L. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J Cell Biochem, 2007, 101(1): 9-33.
|
[18] |
Vincan E, Barker N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp Metastasis, 2008, 25(6): 657-663.
|
[19] |
Arend R C, Londono-Joshi A I, Straughn J J, et al. The Wnt/beta-catenin pathway in ovarian cancer: a review. Gynecol Oncol, 2013, 131(3): 772-779.
|
[20] |
Cho S W, Kim Y A, Sun H J, et al. Therapeutic potential of Dickkopf-1 in wild-type BRAF papillary thyroid cancer via regulation of beta-catenin/E-cadherin signaling. J Clin Endocrinol Metab, 2014, 99(9): E1641-E1649.
|
[21] |
Qi L, Sun B, Liu Z, et al. Dickkopf-1 inhibits epithelial-mesenchymal transition of colon cancer cells and contributes to colon cancer suppression. Cancer Sci, 2012, 103(4): 828-835.
|
[22] |
Wang Y, Ngo V N, Marani M, et al. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene, 2010, 29(33): 4658-4670.
|
[23] |
Suman S, Kurisetty V, Das T P, et al. Activation of AKT signaling promotes epithelial-mesenchymal transition and tumor growth in colorectal cancer cells. Mol Carcinog, 2014, 53(Suppl 1): E151-E160.
|
[24] |
Katoh M, Katoh M. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther, 2006, 5(9): 1059-1064.
|
[25] |
全天一,李伟明,朱秋玲,等.miR-145下调与结直肠癌上皮间叶转化的分子机制探讨.中国现代普通外科进展,2013,16(8): 589-593.
|
[26] |
Park S M, Gaur A B, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev, 2008, 22(7): 894-907.
|
[27] |
Siemens H, Neumann J, Jac kstadt R, et al. Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and beta-catenin predicts distant metastasis of colon cancer. Clin Cancer Res, 2013, 19(3): 710-720.
|
[28] |
Herrera M, Islam A B, Herrera A, et al. Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature. Clin Cancer Res, 2013, 19(21): 5914-5926.
|
[29] |
任春霞,赵敏,徐娜,等.癌相关成纤维细胞通过IL-6诱导的"上皮-间质"转换促进宫颈癌细胞的迁移和侵袭.中国癌症杂志,2014(4): 252-257.
|
[30] |
Miyoshi A, Kitajima Y, Sumi K, et al. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer, 2004, 90(6): 1265-1273.
|
[31] |
Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays, 2001, 23(10): 912-923.
|
[32] |
Wang H, Wang H S, Zhou B H, et al. Epithelial-mesenchymal transition (EMT) induced by TNF-alpha requires AKT/GSK-3 beta-mediated stabilization of snail in colorectal cancer. PLoS One, 2013, 8(2): e56664.
|
[33] |
Hwang W L, Yang M H, Tsai M L, et al. SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology, 2011, 141(1): 279-291.
|
[34] |
Tam W L, Weinberg R A. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med, 2013, 19(11): 1438-1449.
|
[35] |
Moen I, Oyan A M, Kalland K H, et al. Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model. PLoS One, 2009, 4(7): e6381.
|
[36] |
Zeisberg M, Neilson E G. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 2009, 119(6): 1429-1437.
|
[37] |
Hongo K, Tsuno N H, Kawai K, et al. Hypoxia enhances colon cancer migration and invasion through promotion of epithelial-mesenchymal transition. J Surg Res, 2013, 182(1): 75-84.
|
[38] |
Yang A D, Fan F, Camp E R, et al. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res, 2006, 12(14 Pt 1): 4147-4153.
|
[39] |
Kajiyama H, Shibata K, Terauchi M, et al. Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. Int J Oncol, 2007, 31(2): 277-283.
|
[40] |
Hoshino H, Miyoshi N, Nagai K, et al. Epithelial-mesenchymal transition with expression of SNAI1-induced chemoresistance in colorectal cancer. Biochem Biophys Res Commun, 2009, 390(3): 1061-1065.
|
[41] |
Findlay V J, Moretz R E, Wang C, et al. Slug expression inhibits calcitriol-mediated sensitivity to radiation in colorectal cancer. Mol Carcinog, 2014, 53(Suppl 1): E130-E139.
|
[42] |
Brabletz T, Jung A, Spaderna S, et al. Opinion: migrating cancer stem cells-an integrated concept of malignant tumour progression. Nat Rev Cancer, 2005, 5(9): 744-749.
|
[43] |
Matsunaga K, Hosokawa A, Oohara M, et al. Direct action of a protein-bound polysaccharide, PSK, on transforming growth factor-beta. Immunopharmacology, 1998, 40(3): 219-230.
|
[44] |
Sakamoto J, Morita S, Oba K, et al. Efficacy of adjuvant immunochemotherapy with polysaccharide K for patients with curatively resected colorectal cancer: a meta-analysis of centrally randomized controlled clinical trials. Cancer Immunol Immunother, 2006, 55(4): 404-411.
|
[45] |
Olmeda D, Jorda M, Peinado H, et al. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene, 2007, 26(13): 1862-1874.
|